AD-A200 967

ONC FILE COPY

NAVAL POSTGRADUATE SCHOOL
Monterey , California

THESIS

DESIGN AND IMPLEMENTATION OF A PRETTY PRINTER
FOR THE
FUNCTIONAL SPECIFICATION LANGUAGE SFEC

by
Jill A, Weigand
June 1988

Thesis Advisor: Valdis Berzins

Approved for public release; distribution is unlimited

DTIC

\F1.ECTE

DEC O 71388

SECURITY CLASSIFICATION OF Tk PAGE

REPORT DOCUMENTATION PAGE

1. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION : DOWNGRADING SCHEDULE

3 DISTRIBUTION / AVAILABILITY OF REPORT
Approved for publiic releasej

Distribution is unlimited

{ 4 PERFORMING ORGANIZATION REPORT NUMBER(S)

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

Code 37

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6¢c. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 9394%3-5000

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢c. ADDRESS (City, State, and ZIP Code)

10 SOURCE OF FUNDING NUMBERS

TASK
NO

WORK UNIT

FROGRAM PROJECT
NO. ACCESSION NO.

ELEMENT NO

11 TITLE (Include Security Classification)

DESIGN AND IMPIEMENTATION OF A PRETTY PRINTER FOR THE FUNCTIONAL SPECIFICATION

LANGUAGE SFEC

12. PERSONAL AUTHOR(S)
Weigand, Jill A,

13a TYPE OF REPQRT

Manter s Masi 13b T'ME COVERED
as 8 esis

FROM TO

14. DATE OF REPORT (Year, Month, Day)
19§8o June y

15 PAGEZ%JNT

| 16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the
officlal policy or position of the Department of Defense or the U.S, Government,

17 COSATI CODES

_ FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Pretty printer; attribute grammar;
Functional specification

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The purpose of this thesis is to develop and implement a language dependent pretty

printer for the FPEC language,

SPEC 1s a formal language for writing black-box

specifications .or components of software systems which are developed in the functional

specification stage of software development,

to format specifications to make them easier to understand and read,
was written implementing the pretty printer design criteria,
Included is a listing of the grammar for the SFEC

was written as an attribute grammar,

The pretty printer is a software tool used

A computer program
The program uses Kodiyak and

language, the pretty printer program source listing, a representative sample of input used

to test the pretty printer program and resulting output.

A significant result of this

study is the conclusion that by abstracting this language dependent pretty printer it is

feasible to use Kodiyak to create a language independent pretty printer generator.

(ke iq

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT

X uncLassIFiED/UNLMITED [saMe as RPT] bTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

223 NAME OF RESPONSIBLE INDIVIDUAL
Prof. Valdis Berzins

22 u’foﬁésPHa‘%-(Iéﬂgge Area Code)

<2c QFFICE SYMBOL
Be

DD FORM 1473, 84 mae

83 APR edition may be used until exhausted
All other editions are obsotete

i

SECURITY CLASSIFICATION OF THIS PAGE
@ U.S Government Printing Otfice 1984—606-24

Approved for public release; distribution is unlimited

Design and Implementation of a Pretty Printer
for the
Functional Specification Language SPEC

by

Jill Annette Weigand
Lieutenant, United States Navy
B.S., United States Naval Academy, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June, 1988

puthor. Oyt fhpmette. Wygond

57 Jill Annette Weigardd

\ \ O
Approved by:

Valdis Berzins [/Thesis Advisor

g jk ‘

Lutia Lugi, Secdnd Reader
r

%A//’K

" Vincen m, Chairman,
Departmenj Aputer Science

/

., Acting
Policy Sciences

g Jameg M. Fremg
D of Ipformatiom

ii

ABSTRACT

The purpose of this thesis is to develop and implement

a language dependent pretty printer for the SPEC language.
SPEC is a formal language for writing black-box
specifications for components of software systems which are
developed in the functional specification stage of software
development. The pretty printer is a software tool used to

format specifications to make them easier to understand and

read. A computer program was written implementing the
pretty printer design criteria. The program uses Kodiyak
and was written as an attribute grammar. Included is a

listing of the grammar for the SPEC language, the pretty
printer program source listing, a representative sample of
input used to test the pretty printer program and resulting
output. A significant result of this study is the
conclusion that by abstracting this language dependent
pretty printer it is feasible to use Kodiyak to create a

language independent pretty printer generator.

- Accession For
SR NTI5 GRA&I v 4

DI TR M

Wi suneed 1

Just it tyouo]
o e e —
i
i o¥ - e — - e ey
\——L‘“ TR SAINST i) N
N UTTIENERY ‘
| — _
; PR |
Lot N - !

114 T

IT.

INTRODUCTION

A.
B.
c.

D.

BACKGROUND THEORY

A.

B.

OBJECTIVES

TABLE OF CONTENTS

RESEARCH QUESTIONS .

SUMMARY OF FINDINGS

ORGANIZATION OF STUDY et

ATTRIBUTE GRAMMARS

oooooooooooooooooooooooo

oooooooooooooooooooooooo

1. Description of Kodiyakc0...
S - o 3 < 11 1
a. Lexical Scanner Section
b. Attribute Declaration Section
c. Grammar and Attribute Equation
Section ..ttt i i i e i e
3. Output ProcedureSceeeevuesnnnnns
4. Using Kodiyak ...veiviineennnenenns .

PRETTY PRINTER

1.

2.

oooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooo

The SPEC Language et

a. Punctions ...ciiiiiiii ittt

b. State Machines et e

C. TYpeS ot ettt ettt
iv

10
10
11

13

14
17
18
21
23
23
27
28
28

29

IIT. DESIGN AND IMPLEMENTATION Cet et e e 33

A. DESIGN QUESTIONSvceueves e s e et e et en 33
1. Specific Design ISSUESccovvueense 34
a. LineLengthcciviiiiiin. 34
b. 1Indentation e e erts e 34
c. Token Lengthciivvievennn .. 36
d. Commentsccc0000n ceeeeansann 36
€. KeywordsScceeeevcccccnoccanans PN 36
2. General Design ISSUESceevesacanans . 37
B. DESIGN DECISIONS ...c.cceceeeacaca st et e 37
1. Length of Line Decision e 37
2. Indentation Decision et 38
3. Token Length Decisionciivviienn 38
4. Comment Decisioncceeveieneenn. .o 39
5. Keyword Decisionc.icieieeiinnsnenanns 40
C. ATTRIBUTE DEFINITIONSiteeecnsnnnnnenoaes 40
1. BCULSOYr ...coons et es ettt 43
2. Ecursor ettt et e e s et ee s 43
3. Padding c..iiitionetrt ittt ennnans 44
4. Indent Cee v et 45
5. Str valueiiiiiiiiiiiiiiiiiiiiinen 47
6. Length st a e 47
D. PRETTY PRINTER RULES ...t veetnrnvecnnnsonnns 48
1. Rules for Using the Pretty Printer 48

2. Rules for Implementing the Pretty
Printer e esed v et 52

v

I

o~

f

B o

a. Keyword RUlEceivevennonennnnnns 52

b. Terminal Rulecviiiviiinnnns 53

c. Nonterminal Ruleccvuviunuons 59

d. Comment Rule e eee st 62

Iv. CONCLUSIONS ceteeaccannn C e eer s e 65
A. IMPACT OF DESIGN DECISIONS ...:vueeeessnss .o 65
1. Global Parameters et i 66

2. Attributes Checesec e 67

3. Standards teeesetsseneeanes Ceeeaaee 67

4. Comments et et e s s 68

B. EVALUATION OF THE PRETTY PRINTER ..¢evcevveoen 68
1. Kodiyak Compiler Cetennraaans 68

2. Syntax ErXrorseeeeeeees et es e 70

3. Software Extensionscciiieiiiinnnn 72

C. ANALYSIS OF CODE ..ttt ectesonnoensstnancnnens 73
1. Efficiencyiviiiiiiiiiiiiinninnnnnnns 73

2. Readabilityciiiiiiiiiiiiiiiien, 75

3. Ease of Modification 76

D. APPLICATION EXTENSION ..veevevvvcocsnnennons 77
1. Pretty Printer Code Analysis 77

2. Language Independent Pretty Printer 80
APPENDIX A SPECc000 st et e s s st easeeas et 88

APPENDIX B Pretty Printer Codecvvviiveene. 105

APPENDIX C Sample Input/Output ettt 176

LIST OF REFERENCEScceceen. se e e ettt e 220

BIBLIOGRAPHY ..ttt onseroosonnoanns C et e e 222
vi

INITIAL DISTRIBUTION LIST ..t inenneonoocnenoonnunnnas 224

|

vii

LIST OF FIGURES

2.1 Binary Notation Example et
2.2 Nonterminals With Assigned Attributes
2.3 Synthesized/Inherited Attributes et
2.4 Regular EXpPressionsceeeeeeeenees et
2.5 Integer and String Declaration Example Ceean
2.6 Naming Attribute Examplesc.iiiivnenn.
2.7 Available Operatorsiviiiiiniiieecrersnnncanns
2.8 If Then Else Statementc.iiiiiiiiiinrnnns
2.9 Output Procedure Exampleceevvvencncans
2.10 Common Errors in Kodiyakcviiiiivnennnnnn,
2.11 Options List ceee e et et ees et e
2.12 Function Examplecccieiinneennsossonananas
2.13 Machine Examplecottetiteneecnnneroannnnnns
2.14 Immutable Abstract Data Type et
2.15 Mutable Abstract Data Typeccieveeviiinnn.
3.1 Sample Outline ... iiiiiiiiiinirnnnrnenesnnensas
3.2 Comment EXamplesvieeinorentonscnossonnennsas
3.3 General KeywordSeceeeeentseesenssnncsonnnsas
3.4 Expression Keywordscoeeeeeeeesenaronncnnnas
3.5 Special KeywordSveeeerennsensonssanssenncnas
3.6 Pretty Printer Attributes it
3.7 Bcursor and Ecursor Examplescevuieunenn
3.8 Padding Example e ceeeees et
viii

12
14
16
16
17
18
20
21
28
29
31
32
35
40
41
41
42
43
44

45

.

3.12

Indent EXampPle iiiitrieetnteninesresonnneenes
Str_value ExXamplecciciiiininiiineranannnns
Length Example ceeisesseeanass N
Syntactically Incorrect Code Output Example

Printer Options et e et

Invoking the Code Example cee e

Keyword Rules and Exceptions ceeeen

CL Terminal Symbols

Symbol values Different from Symbol Name

CL Terminal Symbols

Symbol Name Same as Symbol Value

VL Terminal SymbOlsS ..ieivieirvrnnnesorsensneenes

Terminal Symbol Rule and Length Check Sum

Calculation ettt et e e
Terminal Rule Exceptionscvvvvn.n.
Terminal Symbol Examples ettt
Terminal Symbol EXampleSeuvevreerescosossnsas
Nonterminal Rule and ExampleScievevevnnneens
Comment Rule et ettt
Kodiyak Files et et
Compiler Change Examples et
Typical Error MessagesS et e e e e e e
Pretty Printer Statistics et ie e
SPACEeS ..ttt iiiencntinnonns Ces e anann Cee et
General Symbol Categories et ecses e e

SLANAATrd FOIYMS 4 vt vvvesasseoocnosssnonssonnsensansaes

Standard Forms Revised Without Comment Symbol

ix

46
47
48
49
50
51

54

55

56

56

58
59
60
61
63
64
69
70
71
73
74
78
79

81

4.11

4.12

Standard Forms Revised With Comment Symbol

PreproCesSOr ...eeessess Cetete et

Language Independent Rules

Attribute Equation Generation Example

ooooooooooo

ooooooooooo

82
84
85

86

I. INTRODUCTION

An expanding field of interest in computer science is
that of software engineering. It 1is importart to the
development of software systems that critical work be done
early in the design of software systems. Therefore the
development of a functional specification is of great
importance to the design effort. Berzins [Ref. 1)
developed a formal 1language SPEC for writing black-box
specifications for components of software systems in the
functional specification stage of software development. To
increase the readability of this code a software tool was
designed to format SPEC. This thesis centers on the design
and implementation of a language dependent pretty printer

for the SPEC language.

A. OBJECTIVES

The main objective of this thesis 1is to design and
implement a language dependent pretty printer to format
SPEC. Appendix A [Ref. 2] contains a listing of the grammar
for SPEC language. The code for the pretty printer is
written as an attribute grammar. This code is then compiled
using Kodiyak. The output of the Kodiyak compiler is the

executable code for the pretty printer to format SPEC.

Additionally, it 1is desired that the pretty printer
code be easy to read and change. Since this is a research
project code efficiency is not as important as code
readability. It is essential that the pretty printer code
operate correctly and that other researchers can understand
and modify the code.

The final objective is to try and take what is learned
in this implementation, abstract it, and develop guidelines
for a language independent pretty printer using Kodiyak and
attribute grammars. These general guidelines are a direct
result of the insight gained from the design and
implementation of one pretty printer using Kodiyak and

attribute grammar.

B. RESEARCH QUESTIONS

There are two research questions for this thesis.
First, what are the underlying issues and decisions that
must be made in the design and implementation of a language
dependent pretty printer? Once these issues are identified
what is their impact on readability, ease in modifying,
portability and efficiency?

Second, can a language independent pretty printer be
developed from the methodology wused in this thesis in the
development of the language dependent pretty printer? 1Is
the implementation regular enough to abstract general rules

and guidelines or is +t(he implementation based on many

special cases and no general rules and guidelines are

possible?

C. SUMMARY OF FINDINGS

The final output from the research conducted in this
thesis is the implementation of a working language dependent
pretty printer. Though it may not be optimally efficient it
works correctly and the code 1is readable. Appendix B
contains the pretty printer code 1listing and Appendix C
[Ref. 3] contains sample input and output for the pretty
printer.

Additionally, from the work done in the development of
the pretty printer a set of general guidelines is developed
for the design of a language independent pretty printer
generator. This generator will need a preprocessor. Output
of the preprocessor is transmitted to the Kodiyak compiler
with the output from the compiler an executable code for the
pretty printing of the language defined by the input to the

preprocessor.

D. ORGANIZATION QF STUDY

Chapter II 1lays the theoretical framework for the
design and implementation of the pretty printer. The
details of attribute grammars, Kodiyak, pretty printers and
SPEC are discussed. These four areas are heavily used in
Chapter III and Chapter IV. Readers unfamiliar with these

subjects will find this chapter necessary.

Al

Chapter III explains the design questions and design
decisions that are made in this implementation.
Additionally an explanation of the attributes used to create
the pretty printer are outlined. The final subject in this
chapter 1is the general and specific rules for the pretty
printer. A user of the pretty printer code needs only a
working knowledge of the general rules. A person who is
going to modify the pretty printer or wants more details
will find the specifi:c rules define the operation of the
pretty printer.

Chapter IV covers the conclusions of this thesis. The
conclusions address the issues of the specific
implementation and how this implementation can be extended
to generate a language independent pretty printer generator.
The lessons learned in the design of the language dependent
pretty printer are abstracted to produce guidelines for the
future development of a language independent pretty printer

generator using Kodiyak and attribute grammar.

II. BACKGROUND THEORY

This chapter lays the theoretical framework for the

design and implementation of the pretty printer. In this
chapter details of the following four subject areas will be
discussed:

(1) Attribute grammars

(2) Kodiyak

(3) Pretty printer

(4) SPEC

Chapter III and Chapter IV of this thesis draw heavily

on developments in these four areas. Readers unfamiliar

with these subjects will find this chapter necessary.

A. ATTRIBUTE GRAMMARS

A grammar consists of a finite set of nonterminal
symbols, a finite set of terminal symbols, a set of
production rules and a start symbol. A language defined by
a grammar is a set of strings consisting only of terminal
symbols that can be generated by the grammar. [Ref. 4:p. 81)
A nonterminal symbol is defined as a variable or a syntactic
category [Ref. 5:p. 77]. A terminal symbol is defined as a
symbol that can appear only on the right-hand side of a

production rule [Ref. 6:p. 97] or as a primitive symbol of

the language [Ref. 5:p.77].

o
T
R R RS

An attribute grammar is an extension of a context-free
grammar whose generated language includes syntax and
semantics. A context-free grammar (CFG) is a four tuple G =
(N,T,P,S) where N is the set of nonterminals, T is the set
of terminals, P is the set of production rules and S is the
start symbol [Ref. 4:pp. 84-85]. The syntactic part of the
attribute grammar is typically a context-free grammar and
the semantic part consists of a set of attributes
associated with each symbol and a set of semantic functions
used to evaluate the attributes' wvalues in term of the
syntactic tree [Ref. 7:p. 331].

The attributes provide a means for expressing data flow
in the derivation tree. They are associated with the node
in the derivation tree and represent inputs and outputs of
the nodes. The attributes of each node in the tree can be
defined in terms of the attributes of neighboring nodes.

An important feature of an attribute grammar is that
some of the attributes are defined for nonterminals that
appear on the right side of the corresponding production
rule, while other attributes are defined when the
nonterminal appears on the 1left side of the corresponding
production rule. This implies there are two types of
attributes. First, a synthesized attribute is based on the
attributes of the descendants of the nonterminal symbol.
Second, an inherited attribute is based on the attributes of

the ancestors. Synthesized attributes are always evaluated

from the bottom up in the tree structure, while inherited
attributes are always evaluated from the top down in the
tree structure. [Ref. 8:p. 130]

Figure 2.1, from Knuth, shows an example of an
attribute grammar which gives a precise definition of binary
notation for numbers. This binary notation is based on the
definition of the context-free grammar (as 1listed in the
left column of Figure 2.1). The terminal symbols are ".",
"0" and "1". The nonterminal symbols are "B", "L" and "N"
representing respectively bit, list of bits and number. A
binary number is intended to be any string of terminal
symbols which can be obtained from "N" by application of the
production rules listed in the context-free grammar. [Ref.

8:pp. 127-130]

Syntactic Rules Semantic Rules

B ->0 v(B) = 0

B ->1 V(B) = 2**s5(B) ;

L ->B v{L) = v(B), s(B) = s(L), 1(L) =1 '

L1 -> L2B v(Ll) = v(L2) + v(B), s(B) = s(L1l)
s(L2) = s(L1) +# 1, 1(L1) = 1(L2) + 1

N ->1L V(N) = v(L), s(L) =0

n->1Ll . L2 V(N) = v(L1) + v(L2), s(L1) = O,

S(L2) = -1(L2)

Note: “**" symbolizes exponent
L1, L2 are subscripted

Figure 2.1 Binary Notation Example

The right-hand column of Figure 2.1 represents the
semantic rules. The semantic rules define all the
attributes of a nonterminal in terms of the attributes of
its immediate descendants. Values are ultimately assigned
for each attribute. The three attributes used in this
example are "v" for value, "1" for 1length and "s" for
scale. Figure 2.2 gives an example of the association
between attributes and nonterminals. Figure 2.3 lists the
synthesized attributes and the inherited attributes for this

example. [Ref. 8:p. 130])

Each B has a "value" v(B) which is a rational number. |
Each B has a "scale"” s(B) which is an integer. i
Each L has a "value" v(L) which is a rational number. |
Each L has a "length" 1(L) which is an integer. !
Each L has a "scale" s(L) which is an integer.

Each N has a

|
"value" v(N) which is a rational number. |
|

Figure 2.2 Nonterminals with Assigned Attributes

Synthesized Attributes Inherited Attributes |
|
v(B) S(B)
V(L) S(L)
(L)
V(N)
Figure 2.3 Synthesized/Inherited Attributes

The semantic rules may be used to give a "meaning" to

strings of the context-free language. For any derivation of

a terminal symbol "t" from "S" (the start symbol) by a
sequence of production rules the derivation tree is
constructed. Then the attributes of this derivation tree,
or parse tree, are evaluated. This process of attribute
definition, which can occur in any order, is applied
throughout the tree until no more attribute values can be
defined. The defined attributes at the root of the tree
constructed give the "meaning" (or desired answer or output)
of that derivation tree. [Ref. 8:pp. 132-133)

Any attribute grammar can be composed of both
synthesized and inherited attributes. Semantic rules that
do not use inherited attributes can be considerably more
complicated (along with being harder to understand and to
manipulate) than semantic rules which allow both kinds of
attributes. Synthesized attributes alone are sufficient to
define any function of the derivation tree but, in
practice, using both types of attributes leads to
simplifications. [Ref. 8:p. 134]

Appendix A [Ref. 2] lists the context-free grammar used
in SPEC. No attributes are 1listed in this grammar.
Appendix B lists the entire 1language Spec including the
attributes for the pretty printer.

B. KODIYAK
The Kodiyak compiler is essential to the implementation

of this pretty printer. A complete understanding of Kodiyak

is not necessary for the user of the pretty printer but an
implementor will be interested in the details. The
following is a summary of the major points of Kodiyak with
an emphasis on what is used in the actual code of the pretty
printer. It covers the following topics:

Description of Kodiyak

Format

)
)
y Output procedures
)

(1
(2
(3
(4) Using Kodiyak

All of the points covered in the following section come

directly from The Incompleat AG User's Guide and Reference

Manual [Ref. 9:pp. 2-25]. The following is a synopsis of
the major points of this manual, enough to understand the
code for the pretty printer but not all the details. If
further or more detailed information is needed consult the
user's guide mentioned above.

1. Description of Kodiyak

Kodiyak is a language designed for constructing
translators. It is modeled after Knuth's description of
attribute grammars. The Kodiyak translator accepts a
context-free grammar along with attribute declarations and
equations, a scanner specification, and output declarations,
and generates an executable translator.

2. Format

The Kodiyak program is divided into three sections.

The first section describes the features of the lexical

scanner. The second section names the attributes

10

I DIBIERCEN WENANEN el)

associated with each grammar symbol and declares their
types. The third and final section describes the grammar
and attribute equations which define the semantics of the
translation. The sections are separated by the unique
symbol double percent symbol ("%%") which is located on a
line by itself.

a. Lexical Scanner Section

Each statement in the first section of the
Kodiyak program describes the terminal symbols of the
translation in some way. The two functions of this section
are first, to specify the correspondence between the
terminal symbols of the grammar and the input text, and
second, to specify a set of operator precedences to be used
in conjunction with the grammar.

The lexical scanner section defines the set of
substitutions to be performed on the input text. These
substitutions are carried out wusing regular expressions.
Input is scanned for text that matches these regular
expressions. If a match is found then the corresponding
text 1is deleted and replaced with the associated named
terminal symbol (the symbol that occurs on the left-hand
side of the regular expression).

Figure 2.4 shows examples of regular

expressions. An explanation of the symbols will assist in

understanding this terminology. The colon (":") indicates
that a regular expression follows. The bar ("l") indicates
11

an OR. The symbol "Backslash" is a symbolic constant
representing the "\" character. The input string "MOD" or
the symbol "Backslash" is replaced by the atomic terminal
symbol "MOD". The asterisk ("*") 1is an indication of zero
or more repetitions. This means that the symbol ({Blank)}*
represents zero or more instances of the symbolic constant
*Blank". The plus sign ("+") 1is very similar to the
asterisk except that it means one or more. The square
brackets ("[", "]") mean an OR operation of the items inside
of the brackets. Therefore [a-zA-~Z] means one letter of the
alphabet. The curly brackets ("(",")}") are used to invoke
substitution. The caret ("~") is wused to mean everything
except what follows it. Therefore [~"\\] means everything

except the quotation mark or a backslash.

COMMENT : "--".x"\p"
AND smgn |
MOD : {Backslash) |MOD |
:{Blank}+ x
NAME :[Letter}{alpha}* i
|

sdefine Char :([~"\\]|(Backslashj}{Quote})
$define Letter : [a-2A-Z]

%define Int : {Digity)+

$define Digit : [0-9]

%define Quote : ["]

Figure 2.4 Regular Expressions

Another way to write regular expressions is

also illustrated in Figure 2.4. It 1is a shorthand or

12

abbreviated way to write a regular expression. This second
method uses "%define" as the first symbol in the regular
expression. Either format can be used with regular
expressions and they both can appear in the code at the same
time. There are three important rules about regular
expressions that must be remembered to prevent errors.
First regular expressions can occur on one line only. They
may never extend beyond one typed line. Second, regular
expression substitution may not be used outside of the
reqular expression section of the lexical scanner. Third,
each regular expression must be defined before it can be
used.
b. Attribute Declaration Section

The attribute declaration section of the
Kodiyak program names the attributes associated with each
grammar symbol and declares their types. 1In this version of
the Kodiyak program the attribute declarations for all
nonterminals and named terminals are the only statements
that may be present in this section. Future versions of
Kodiyak may include other features.

Kodiyak supports two primitive data types for
the attributes. They are integers and strings. All simple

mathematical functions are available for wuse with the

integers (i.e., addition, subtraction, multiplication,

division). The size (minimum or maximum value) of the

integers will be machine dependent. Strings can Dbe of any
13

length with the only associated function being
concatenation. String constants are denoted by enclosing
the string in double quotes. Any special characters must be
preceded by the "\" symbol. Figure 2.5 shows an example of

integers and strings and how they are declared.

renames {
indent : string;
str_value : string;
bcursor : integer;
padding : string; !
ecursor : integer; |

) |

Figure 2.5 Integer and String Declaration Example

Kodiyak also supports higher order types called
maps which can be used as symbol tables. These will not be
discussed here since they are not used by this
implementation of the pretty printer.

Named terminal symbols are permitted to have
user-defined attributes as well as two special predefined
attributes %text and %line. They are initialized to the
text of the terminal symbol matched and the line number of
the input text that the match text occurred on
(respectively). The attribute %text is used in the pretty
printer but the attribute %line is not.

Cc. Grammar and Attribute Equation Section
The third and final section of the Kodiyak

program describes the grammar and attribute equations which

14

o J

define the syntax and the semantics of the translation. The
left-hand symbol of the first rule of the grammar section is
taken to be the start symbol. The start symbol may not
appear on the right hand side of any rule.

An attribute value is named by naming the
grammar symbol associated with it, a period and the
attribute. The grammar symbol may be named in one of three
ways. The simplest (if there are no repeated grammar
symbols in the production) 1is use the name of the symbol.
If that grammar symbol appears more than once then further
distinction must be made. In this case, the name is taken
to refer to the left-most occurrence of the grammar symbol.
To name a grammar symbol which is not the left-most instance
of that grammar symbol, the name may be indexed by a number
in square brackets denoting which occurrence is desired.
The left-most occurrence of the symbol is numbered one, the
next left-most two, the next left-most three, etc. These
first two ways are used by the pretty printer. The third
way is with the wuse of the dollar sign ("$") followed by
the numerical position of the grammar symbol in the
production. This is not used by the pretty printer. Figure
2.6 gives examples of naming attributes.

All of the functions/operators available for
the integer and strings are shown in Figurce 2.7. These
functions include arithmetic, string manipulation,

relational operators and logical operators. The left-hand

15

column of Figure 2.7 shows the symbol and the right-hand

column provides the meaning of that symbol.

expr: f
expr '+' UNUMBER i
§S.value = $l.value + s2i($3.%text); |
}
expr: !
expr '+' UNUMBER |
expr.value = expr[2].value + s21i(UNUMBER.%text);
}
expr:

expr '+' UNUMBER

expr{l].value = expr{2].value +
S2i (UNUMBER[1l].%text);

Figure 2.6 Naming Attribute Examples

addition

multiplication

subtraction

division

concatenation

[1 concatenation

less than

greater than

equal

not equal !
less than or equal

>= greater than or equal
&& and

%* +

>N

AANl v A

[V '}

Note this a partial list showing just the operators
used in this implementation.

Figure 2.7 Available Operators i

16

4

One final note about attribute equations
concerns the if-then-else statement. The symbology is a
little different from more programming languages. There are
no keywords "if", "then" or "else" but only the symbols "-
>" and "#". For example, "IF A THEN B ELSE C" is written "A
~-> B # C". Figure 2.8 shows a typical if-then-else
statement. The expression to the right of the "=" is the
"if", The expression to the right of the "->" is the
"then" and the expression to the right of the "#" is either

the "else" or "else_ if" part.

p—

IF THEN ELSE EXAMPLE

comment[l].str_value = comment[l].bcursor <= 0
-> [COMMENT.%text,comment[2].str_value]
["\n",COMMENT.%text,comment[2].str_value];

IF THEN ELSE_IF EXAMPLE

comment[l].str value = comment({1l].bcursor <= 0
-> [COMMENT.%text,comment[2].str_value]
comment[1l].bcursor + len(COMMENT.%text) >= 80
-> ["c" ,COMMENT.%text,comment(2].str_value]
("\n",COMMENT.%text,comment[2].str_value];

Figure 2.8 If Then Else Statement

3. Output Procedures

To get any output from the Kodiyak program, such as
the pretty printer does, the program must include a special

side-effecting procedure. The side-effecting procedure with

17

v YT

its associated equations can only be used by the start
symbol. There are five of these procedures available in
Kodiyak and they are introduced by a percent symbol,
followed by the name of the procedure and the arguments
surrounded by parentheses. The pretty printer only uses one
of the procedures, named "%output". Figure 2.9 gives a

short description of the procedure as well as an example.

soutput(val:string)
val is written to the standard output
EXAMPLE

start
comment spec

soutput ([comment.str value,
spec.str_value]);
comment.bcursor = 0;

)
Figure 2.9 Output Procedure Example

4. Using Kodiyak

The Kodiyak compiler creates and processes many
files among them are files which are processed by Yacc, by
Lex and by the C compiler. There are also two predefined
files that the Kodiyak compilation depends on. The first is
the Kodiyak 1library which contains functions for creating
the parse tree, evaluating attributes, concatenating

strings, creating pairs, etc. This file is usually not

18

modified by the user. In this implementation this file is
named kmain.c.

The second file is the library. This file is a set
of C functions. This is where the user can add any new
functions for the Kodiyak's use. In this implementation the
function SPACES was added to the end of the file named
keclib.c. The file itself has information on how to add
functions. Note this is the only place available for the
user to add his own functions. Creating a separate file and
compiling it separately will cause syntax errors.

The command to invoke the Kodiyak is "k sample.k".

The file that handles everything (i.e., the driver of the

software) is the file k. The name of the file to be
compiled is sample.k in this case. Files to be compiled
should have the extension ".k" or the compiler may not
accept 1it. Kodiyak programs may also have one other
extension ".m4" but that was not used in this
implementation.

If the program compiles without errors, the
resulting object file (executable code) will be in the file
named "sample". This is the name of the file submitted
without the extension. Otherwise some cryptic error
messages may be printed. Some common errors (as well as the
type of error message printed and "what to do") are listed
in Figure 2.10. There is also a set of options available to

assist in debugging. The options are typed on the same line

19

but immediately after the "k sample.k". Figure 2.11 shows

the options available.

ERROR

1. syntax error - which are mostly typing errors

2. missing attribute evaluation rules and
circular evaluation rules

3. table overflow errors

4. memory storage exceeded

MESSAGE PRINTED OUT |

1. an associated line number with the symbol :
that has the syntax error i
2. pair of grammar rules the parent of the error |
rule and the error rule ‘
3. statement "table overflow need more space" |
4. statement "exceeded memory space" :

WHAT TO DO

1. find the typing mistake |

2. look for a missing attribute evaluation rule in §
the parent rule ‘

3. increase table size allotted

4. 1increase memory space for given variable

|
!
Figure 2.10 Common Errors in Kodiyak j

One final note about error messages. The first
character of any identifier name should usually be ignored.
They are tacked on by the Kodiyak compiler to avoid naming
conflicts between Lex, Yacc, C and Kodiyak library routines.
As an example, if the error message printed
"ucomment.padding is undefined" this should be read as

"comment .padding is undefined".

20

~-h Print out a list of legal options. .

file Read input from "file"rather than the standard !
input !

-e Continue attribute evaluation even after an l
error occurs. This is useful when debugging
attribute definitions.

-1 Print out all tokens as they are scanned.

-y Print out all grammar rule reductions as they
occur.

-L Turn on LEX's debugging features.

-Y Turn on YACC's debugging features. }

-C Generate a core image when a run-time error |
occurs :

-s Print out storage statistics after all |

attribute evaluations is completed.

-o file Divert the standard output to "file".

Figure 2.11 Options List

C. PRETTY PRINTER

A pretty printer is a software tool used to format
programs to make them easier to wunderstand and read. It
takes character strings, called tokens, from an input source
and prints them with aesthetically appropriate spacing and
line breaks. The input is wusually a text file or a parse
tree. The two primary functions of the pretty printer are
to insert spaces and 1linefeeds between tokens and to

determine where and how to break lines. [Ref. 10:p. 119)

A syntax-directed pretty printer is a pretty printer
that knows the syntax of a programming language and formats
programs based on that knowledge. The syntactic structure
and flow of control of pretty printed programs are made
clear because the output medium shows the indentation and
line breaks. [Ref. 10:p. 119])

A syntax-directed pretty printer may be either language
dependent or 1language independent. A language dependent
syntax-directed pretty printer is written for a specific
language. Since all constructs in the language are known,
the pretty printer traditionally has been written as a large
switch or case statement (for 1languages like Pascal and
Lisp). If any changes are made to the language the code
for the pretty printer must be revised. [Ref. 10:p. 120]

The language independent syntax-directed pretty printer
is designed to be used for any language. In this case no
knowledge of any particulars of a language are used in
constructing the pretty printer. This version of a pretty
printer must be given information about a language to
produce a pretty printer for that language. 1In the long run
it is easier and quicker to write one language independent
pretty printer that can be used over and over again then to
code a new pretty printer for each specific language that is
to be pretty printed. [Ref. 10:p. 120}

For either type of syntax-directed pretty printer there

are common issues that must be addressed. Issues such as

22

where to add spaces and linefeeds, where to break a line,
how to handle comments and what to do about syntax errors
must be handled with great care [Ref. 10:p. 121]. The
pretty printer developed in this thesis 1is a language
dependent syntax-directed pretty printer (referred to
throughout this thesis as a language dependent pretty
printer). The generalization of this implementation is
discussed and general rules for a language independent
syntax-directed pretty printer are developed but are not

implemented.

D. SPEC

SPEC is a formal language for writing black-box
specifications for components of software systems. SPEC
uses the event model to define the black-box behavior of
proposed and external systems. Black-box specifications are
developed for the external interfaces of the system in the
functional specification stage of software development, and
for the internal interfaces in the architectural design
stage. Discussion of the event model and the SPEC language,
extracted from [Ref.l:pp. 3.1-3.15), follows. Appendix A
[Ref. 2] contains a listing of the grammar for the SPEC
language.

1. The Event Model

In the event model, computations are described in

terms of events, modules and messages. An event occurs

23

;i

when a message is received by a module at a particular
instant of time. A module 1is a black box that interacts
with other modules only by sending and receiving messages.
A message is a data packet that is sent from one module to
another module.

Modules can be used to model external systems such

as users and peripheral hardware devices, as well as

software components. A module has no visible internal
structure. The behavior of a module 1is specified by
describing its interface. The interface of a module

consists of the kinds of events that can occur at the module
along with its response to each kind of event. Each kind of
event corresponds to a different of incoming message. Each
response consists of the later events directly triggered by
a given initial event.

Any module accepts messages one at a time, 1in a
well-defined order that can be observed as a computation
proceeds. Message transmission is assumed to be reliable.
Messages can have arbitrarily long and unpredictable
transmission delays. The order of messages arriving is
normally not under control of the designer.

In the event model each module has its own local
clock. The local clocks of different modules are not
necessarily synchronized with each other. Each event occurs
at a well-defined instant of time, which is the time at

which the destination module receives a mecsage, according

24

to its own local clock. The length of time between two
events is precisely defined if both events occur at the same
place. The length of time between two events at different
locations can be estimated in terms of two readings of the
same clock, but this is only an approximation because of
unpredictable message delays in obtaining remote clock
readings. The only kind of time interval meaningful in the
event model is the duration between two events. There is no
way to distinguish between computation delay and
communication delay in the event model.

Each message has a sequence of zero or more data
values associated with it. The other attributes of a
message are its name, its condition and its origin. All of
these attributes are single valued. Exceptions are modeled
as messages by means of a condition attribute, which can
take on the values "normal" and "exception". The condition
of a message expressing a normal request for service is
"normal". The condition of a message reporting an abnormal
event somewhere is "exception", 1in which case the name of
the message is the name of an exception condition.

The response of a module to a message 1is completely
determined by the sequence of messages received by the
module since it was created. A module 1is mutable if the
response of the module to at least one message it accepts
can depend on messages that arrived before the most recent

incoming message. A module is immutable if the response of

25

i

“'

the module to every possible message is completely
determined by the most recent incoming message. Mutable
modules behave as if they had internal states or memory,
while immutable modules behave like mathematical functions.
A module is immutable if and only if it is not mutable.

Each module has the potential of acting
independently, so that there is natural concurrency in a
system consisting of many modules. Since events happen
instantaneously and the response of a module is not
sensitive to anything but the sequence of -events at the
module, the event module implies concurrent interactions
with a module cannot interfere with each other at the level
of individual events. This non-interference must be
guaranteed by implementations which require a finite time
interval to trigger the responses to an event. The response
of a module is under the control of the designer.

In modeling concurrent systems it is sometimes
necessary to specify atomic transactions. Atomic
transactions are non-interruptible sequences of events at a
module. Once a module starts an atomic transaction, it
cannot accept any messages that are not part of the
transaction until it is complete. Atomic transactions are
sometimes needed to specify non-interference between
concurrent sets of activities involving chains of multiple
events at the same module. Atomic transactions must be used

with care because they can 1lead to deadlocks if the

26

protocols of the modules involved in a transaction are not
compatible with each other, and can lead to starvation if a
transaction goes on forever.

Modules can be used to model current and
distributed systems, as well as systems consisting of a
single sequential process. The event model helps to expose
the parallelism inherent in a problem, because the only time
orderings specified are those which are unavoidable and are
agreed on by all observers.

Events can be triggered at absolute times. Such
events are called temporal events. Temporal events are the
means by which modules can initiate actions that are not
direct responses to external stimuli. Formally a temporal
event occurs wien a module sends a message to itself at a
time determined by its 1local <clock. Unless explicitly
stated otherwise, there may be an unpredictable delay
between the time when the message is sent and the time when
it is received, just like for any other message.

2. The SPEC Language

The SPEC language uses first order logic for the
precise definition of the desired behavior of modules. The
Spec language provides a means for specifying the behavior
of three different types of modules:

Functions

State machines

(1
(2
(3 Types

—

27

Each of these types of modules is described in the
following pages along with examples of each type of module.
a. Functions
Function modules are immutable and calculate
functions on data types, where "function" 1is interpreted as
in standard mathematics. Usually function modules provide
only a single service and hence accept anonymous messages.
Figure 2.12 gives an example of the specification for a

square root function.

FUNCTION square_root{precision:real)
WHERE precision > 0.0 |

MESSAGE (x:real) |
WHEN x>= 0.0

REPLY (y:real)

WHERE y >= 0.0 & approximates (y*y,X)

OTHERWISE REPLY EXCEPTION imaginary_square_root

CONCEPT approximates (rl r2:real)
--True if r1 is a sufficiently accurate
--approximating of r2.
--The precision is relative rather than absolute
VALUE (b:boolean)
WHERE b<=> abs ((rl - r2)/r2) <= precision

END

Note: "--" introduces a comment and all keywords in
Spec appear in all capital letters

Figure 2.12 Function Example

b. State Machines
A machine 1is a module with an internal state,

i.e., machines are mutable modules. Figure 2.13 shows an

28

example of a machine. The behavior of the machines is
described in terms of a conceptual model of its state,
rather than directly in terms of the messages that arrived
in the past, because descriptions in terms of such a

conceptual model are usually shorter and easier to read.

|

MACHINE inventory %
--assumes that shipping and supplier are other modules
STATE (stock:map{item,integer})

INVARIANT ALL (i:item::stock(l] >= 0)

INITIALLY ALL (i:item::stock[1] = 0)

MESSAGE receive (i:item,q:integer)
--Process a shipment from a supplier.
WHEN q > ©
TRANSITION stock[l]=*stack[i] + g
--Delayed responses to backorders are not shown.
OTHERWISE REPLY EXCEPTION empty shipment

MESSAGE order (io:item,go:integer)
--Process an order from a customer.
WHEN 0 < go <= stock{io] ;
SEND ship (is:item, gs:integer) TO shipping !
WHERE is = io, gs = qgo
TRANSITION stock[io] + go = *stock[io]
WHEN 0 < go > stock[io]
SEND ship (is:item, gs:integer) TO shipping
WHERE is = is, gs = stock[io] 1
SEND back_order (ib:item, gb:integer) TO supplier ’
WHERE ib = io, gb + gs = qgo |
TRANSITION stock[io] = 0 ?
OTHERWISE REPLY EXCEPTION empty order |
END

Figure 2.13 Machine Example

c. Types
A type module defines an abstract data type.

An abstract data type provides many services therefore the

29

messages of a type module usually have a name. An abstract
data type consists of a set of instances and a set of
primitive operations involving the instances. The instances
are the individual data objects belonging to the type. The
instances of an abstract data type are black boxes. The
properties of the instances are not visible directly, and
can only be observed and influenced by means of the
primitive operations. The properties of an instance are
determined by the primitive operation that created the
instance and the sequence of primitive operations applied
after it was created.

Date types are either mutable or immutable.
For immutable types the set of instances and the properties
of each instance are fixed. Operations producing instances
of the type are viewed as selecting members of this fixed
set. Figure 2.14 1is an example of an immutable abstract
data type.

The state of a mutable data type consists of a
set of instances which have internal states. The initial
state of a mutable type is an empty set of instances.
Mutable types have operations for creating new instances,
and usually also operations that can change the properties
of an instance once it has been created. An eyample of a
mutable abstract data type with immutable instances is the

set of unique identifiers for the objects in a database.

30

TYPE rational

INHERIT equality {rational)

MODEL (num den:integer)

INVARIANT ALL (r:rational::r.den ~= 0)

MESSAGE ratio (num den:integer)
WHEN den ~= 0
REPLY (r:rational)
WHERE r.num = num, r.den = den
OTHERWISE REPLY EXCEPTION zero_denominator

MESSAGE add (x,y:rational) OPERATOR +

REPLY (r:rational)

WHERE r.num X.num*y.den+y.num*x.den,
r.den x.den*y.den

MESSAGE multiply (x y:rational) OPERATOR *
REPLY (r:rational)
WHERE r.num = x.num*y.num, r.den = x.den*y.den

MESSAGE equal (x y:rational) OPERATOR =
REPLY (b:boolean)
WHERE b <=> (x.num*y.den = y.num*x.den)
END

Figure 2.14 Immutable Abstract Data Type |

An instance of a mutable data type is very
similar to a state machine, except that the state machine is
implicitly created at the start of the computation, while
the instances of a mutable data type are created as a
computation proceeds. A state machine has exactly one
instance, while a mutable data type can have any number of
instances. Figure 2.15 is an example of a specification of

a mutable data type.

31

———

TYPE queue (t:type)}
INHERIT mutable (queue)

—

--Inherit definitions of the concepts new and defined.

MODEL (e:sequence)

-The front of the queue is at the right end.
INVARIANT tue

--Any sequence is a valid model for a queue.

MESSAGE create
--A newly created empty queue.
REPLY (q:queue{t)) WHERE g.e = []
TRANSITION new(q)

MESSAGE enqueue (x:t, g:queue(t)})
--Add x to the back of the queue.
TRANSITION g.e = append([x], *g.e)

MESSAGE dequeue (q:queue(t})
--Remove and return the front element of the queue.
WHEN not_empty (Qq)
REPLY (X:t)
TRANSITION *g.e = append (qg.e,[x])
OTHERWISE REPLY EXCEPTION queue_underflow

MESSAGE not_empty (g:queue(t})
--True if g is not empty.
REPLY (b:boolean) WHERE b <=> (g.e ~= [])
END

Figure 2.15 Mutable Abstract Data Type

32

III. DESIGN AND IMPLEMENTATION

The actual design and implementation for the pretty
printer was motivated not only on the specific application
to this particular langu;ge but also by the desire to
generalize the solution to apply to other languages. It is
highly desirable that what is learned from this particular
case can be extended to the design of a language

independent pretty printer.

A. DESIGN QUESTIONS

A language dependent pretty printer is a software tool
to increase the readability and understandability of a
specific formal language. In this 1light the design
questions must be centered around increasing both the
readability and understandability of Spec (the language used
in this application).

One important constraint related to this specific
application must be considered carefully. The Kodiyak
compiler cannot be changed. There are provisions to add
features to the compiler but the overall design and
implementation of the Kodiyak compiler is fixed. Therefore
any design decisions must not require any modifications to

the Kodiyak compiler itself.

33

R\

1. Specific Design Issues

There are five considerations specific to this

implementation that must be addressed. They are:

(1) Length of each line

(2) Standards for indentation
(3) Token length

(4) Comments

(5) Keywords

a. Line Length
The length of the 1line defines the maximum
number of characters that can be printed on any given line.
This length can be chosen regardless of the width of the
output medium but must permit the maximum number of
characters to all be printed within the output medium's
width. Depending on the implementation this can be either a
global constant or an input parameter.
b. Indentation
Indentation, as applied to computer programs,
groups together lines of related code. An example in the
English language of indenting is a formal outline. There
are major topic headers. Under each major topic header is
subtopic headers with each subtopic being subdivided
(depending on how detailed the outline is). Figure 3.1 is
an example of a simple formal outline.
As Figure 3.1 shows indentation makes the
structure easy to see. Related items all start at the same

distance from the left margin. As the number of

34

subdivisions grow the longer the indentation (relative to

the left margin).

I. Introduction
a. Software engineering
1. General introduction
b. Functional specification
1. Nonformal
2. Formal
(a) Spec Language
II. Background
a. Attribute grammar
1. Definition
2. Purpose/role
3. Attributes in general defined |
(a) Synthesized 1
(b) Inherited g
b. Kodiyak ;
1. Definition |
2. Format ‘
3. Semantics {

Figure 3.1 Sample Outline

In computer programs how much to indent related
lines is an important question. Using too many spaces for
indenting can easily run 1lines of code off a page. On the
other hand not using a wide enough indent does not show the
structure of the code and decreases readability. A
compromise must be made between readability and losing lines
of code off a page. The standard for program code is
between two and five spaces for indenting each subdivision

of related lines of code.

35

M

R | e

c. Token Length
Token length 1is the actual length of any token
used in the language. One assumption that should be made is
that no token 1is longer than the maximum number of
characters allowed on one line.
d. Comments
Comments are added to provide documentation to
the code and also explain what the code is actually doing.
Therefore it is extremely helpful to have comments disbursed
among the 1lines of code. For readability comments should
not appear between code segments that are on the same line.
The particular language implemented will specify the
allowable placement of comments and how the comments are
identified.
e. Keywords
The final consideration is keywords. Does the
language contain keywords? If so, how are they to be
distinguished? Are they unique (i.e., reserved) or can the
programmer use a language keyword with a totally different
meaning? Do keywords have special format? Some of the
possibilities are:
(1) all capitalized with the rest of the code lowercase
(2) all capitalized with the rest of the code a
combination of lowercase and uppercase

(3) wunderlined
(4) proceeded by a special character

36

2. General Design Issues

When considering the specific questions generic
rules should also be a consideration. Can this specific
implementation be easily modified to handle different/slight
modifications? For example if the line length is increased
will this radically effect the software or is it a very easy
change? Additionally, can more features be added if
desired? Can debugging aids be added to the already
existing software? will any modifications still be
compatible with the existing software? Will added features
effect the original code causing a revision? 1If these added
features cause the original code to be revised, how much
work is involved and are the added features worth the added

work?

B. DESIGN DECISIONS
The decisions that were made for this specific
implementation concern the questions raised in the previous

pages. They are:

(1) Length of a line
(2) Token length

{3) Indentation

(4) Comments

(5) Keywords

1. Length of Line Decision

The length of the standard line for this
implementation is 80 characters. It makes no difference

whether the output from the pretty printer is printed on 8

37

K ¥

i

1/2" paper or the wider 14" paper. This print out will fit
on either size of paper which allows for more flexibility in
what printer and paper is used. The only drawback to this
decision is that if the wider paper is used the right 5 1/2"
of the paper will not be utilized.

2. Indentation Decision

The standard indentation 1is always three blank
characters. As each sentence in the language is subdivided
(broken down into the grammar rules) the indentation is
expanded by an additional three blank characters. Three is
a fairly reasonable number between the standard, in computer
science, two and five spaces. It allows the reader's eyes
to see what sentences and parts of sentences are all related
at the same level. Additionally, there is not too much
indenting (i.e., using five blank characters) so that if a
lot of subdividing (or recursion) occurs the indenting will
not run the print out off the page.

3. Token Length Decision

One necessary assumption made by this
implementation is that the token length for any token will
not exceed the maximum line length. Any token greater than
80 can never be printed with the restriction placed on this
implementation. If the 1line length 1is increased then the

maximum token length can also be increased.

38

e Bt

4. Comment Decision

Comments are allowed to be one line or multiple
lines long. Comments can come at the end of a line of code
filling the space until the right-hand margin is reached, or
can be one line 1long starting at the 1left-hand margin, or
can extend over several lines with each new line flush with
the left-hand margin.

The one restriction on a comment is that it is
always started with a special character and its total
length (including the special character) is 1less than or
equal to the 1line 1length. For this implementation the
special character to introduce a comment is "--".

For a comment extending beyond the line length it
must be broken up into two 1lines each starting with a
special character. If this is not done by the user part of
the comment may be lost when it is printed. It is important
to emphasize that it is the user's responsibility to insure
that comments are not 1longer then 80 characters since this
pretty printer implementation assumes a single comment will
fit on one line (80 characters or less).

For output the special cr.mment character is always
followed by one blank character. If a comment comes at the
end of a 1line of code the pretty printer will place two
blank characters before the special character. If the
comment starts a new line there will be no proceeding blank

characters. Figure 3.2 shows examples of comments.

39

-- This comment is a single line comment. 1

2. ‘
expression = exp + exp -- Comment following code

3.
expression = exp + exp -- Comment following code
~- but this time code extends more than one line.

4.

~- This is a sample of a multiline comment with
~- the first line being flush with the left margin.

Figure 3.2 Comment Examples

5. Keyword Decision

All keywords in the output are capitalized. In
this implementation there are three types of keywords. The
importance of these three types will be explained in more
detail later. Figures 3.3, 3.4 and 3.5 show the three
types of keywords. All three categories of keywords are
typed in all uppercase letters with the difference coming in

the indentation rules related to the keywords.

C. ATTRIBUTE DEFINITIONS

The design of the pretty printer centers around the
selection of attributes. The goal of the design is to
create a software package that produces a formatted output
that is readable and reflects the structure of the original
code. The format of the input must be irrelevant to the
pretty printer. It must also be noted that the input must
be syntactically correct for the pretty printer to operate

correctly.

40

FUNCTION ITERATOR

END TEMPORAL

MACHINE EXCEPTION

TYPE THEN

DEFINITION ELSE

INSTANCE ELSE_IF

INHERIT VALUE

HIDE DO

RENAME IF

IMPORT TRANSACTION

FROM INITIALLY

EXPORT INVARIANT

MESSAGE STATE

WHEN MODEL

OTHERWISE CONCEPT

CHOOSE FOREACH

REPLY SUCH

GENERATE TRANSITION

SEND VIRTUAL

TO WHERE

Figure 3.3 General Keywords

TIME ALL
DELAY SOME
PERIOD NUMBER
ALL SUM
PRODUCT SET
MAXIMUM MINIMUM
UNION INTERSECTION |
NANOSEC MICROSEC
MILLISEC SECONDS
MINUTES HOURS
DAYS WEEKS
OPERATOR

F

igure 3.4 Expression Keywords

41

o J

Figure 3.5 Special Keywords

The attributes will define the language dependent
pretty printer. There should be as few &attributes as
possible with each 1limited to one specific function
therefore making each very 1limited in scope. All the
attributes can be one of two types: synthesized attributes
or inherited attributes. Synthesized attributes are based
on the attributes of the descendants of the nonterminal
symbol. 1Inherited attributes are based on the attributes of
the ancestors. Synthesized attributes are evaluated from
the bottom up in the tree structure, while inherited
attributes are evaluated from the top down. [Ref. 8:p. 130]

The pretty printer will need values for the print head
position, lengths of symbols, values for indenting and the
actual string that will be printed. With these ideas in
mind this implementation utilizes six attributes as shown in
Figure 3.6.

The type of attribute, the type of value the attribute
is and a definition (with examples if necessary) of each
attribute follows. Remember that each attribute has one

unique purpose which is very limited in scope.

42

ATTRIBUTE DEFINITION
bcursor beginning cursor position
ecursor end cursor position
padding blank spaces to pad beginning of line
indent indentation
str_value string value
length number of characters long
Figure 3.6 Pretty Printer Attributes

1. Bcursor
Bcursor is short for beginning cursor position. It
is the column position at which the left-most character of a
production rule will be printed. This 1is an inherited
attribute with an integer value. As the print head moves
across the paper from 1left to right the value of bcursor
will increase from one to the maximum line length (in this
implementation maximum line length is 80). Figure 3.7 shows
examples of bcursor.
2. Ecursor
Ecursor 1is short for end cursor position. 1It is
the column position at which the right most character of a
production will be printed. This 1is a synthesized
attribute with an integer value. This attribute can range
in value from one to the maximum 1line length (in this

implementation line length is 80). The ecursor of any rule

43

is the bcursor of the next rule in the parse tree. Figure

3.7 shows the interplay between bcursor and ecursor.

action_list
EXCEPTION parametrized name

{
h. parametrized name.bcursor=action list.bcursor+10(*);
action list.ecursor = parametrized name.ecursor;

}

message_header
-l : optional_exception optional name formal arguments

optional exception.bcursor = message header.bcursor; |
optional name.bcursor = optional_exception.ecursor;
formal arguments.bcursor = optional name.ecursor; ,
message_header.ecursor = formal arguments.ecursor; 1

}

(*)10 is the number of characters in the word i
EXCEPTION plus one

Figure 3.7 Bcursor and Ecursor Examples

3. Padding

Padding is short for necessary blank séaces to pad.
It is a string of blank spaces to put at the beginning of a
new line when the cuirent line must be split because it is
longer than the maximum line length. This is an inherited
attribute with a string value of blank characters. The
value of the attribute can range from zero blank characters
to the maximum line length. Figure 3.8 shows an example of

the implementation of the padding attribute.

44

instance

:optionally virtual INSTANCE parametrized name = |
parametrized name comment hide renames END !
{
parametrized name[l].padding =

[spaces(optionally virtual.ecursor),spaces(9)]: (*)
parametrized name[2]. paddlng

parametrized _name[l].padding;
hide.padding = hide.indent;
renames.padding = renames.indent;

}

(*)spaces(9) is a function that produces a string of nine
blank characters

Figure 3.8 Padding Example

4. Indent

Indent is short for indentation. It is a string of
blank characters associated with each nonterminal symbol of
the same production rule. At each level of nesting the
number of blanks associated with the value of the attribute
indent increases by three. This is an inherited attribute
with a string value. The string value for indent is the
number of blanks associated with a nonterminal symbol. The
length of the string can range from =zero to the maximum
length of line (in this case it also has to be a multiple of
three so the maximum value would be 78). This allows all
related lines to be easily seen and to maintain the
structure of the code. Figure 3.9 shows an example of how

the indent attribute is used.

45

function
: optionally virt interface messages concepts

{

optionally virt.indent=[function.indent,spaces(3)](*);
interface.indent = [function.indent,spaces(3)](#);
messages.indent = [function.indent,spaces(3)];
concepts.indent = [function.indent,spaces(3)];

}

(*)"[" and "]" are symbols to represent string
concatenation of all values between the two symbols

(#)spaces(3) is a function producing a string of three
blank characters

Figure 3.9 Indent Example

On the surface it appears that indent and padding
are very similar and could be combined. This is not the
case. Indent has a 1length that is always a multiple of
three, a forced linefeed occurs with every indent and indent
is only wused with keywords. Indent is designed to show the
nesting levels of all symbols from the same production.
Padding, on the other hand, can range in length from zero to
the maximum line length, linefeeds are optional and is used
only to assist in lines that are too 1long to fit on one
line. Padding is designed to format long 1lines keeping all
text of the long line grouped together. Figure 3.8 shows
the interplay between the two attributes padding and indent.

46

5. Str value

Str_value is short for string value. The output of
the pretty printer is the str_value attribute of the start
symbol at the root of the parse tree. It is the set of
terminal symbols derivrd from a production rule together
with spaces and linefeeds for formatted output. This is a
synthesized attribute with a string value. The length of
str_value can be of any value from zero to infinity. The
str_value of the start symbol will have the longest length.
Concatenation is used to put different str value attributes
together. Figure 3.10 shows an example of the concatenation

of strings to obtain a value for str_value.

definition
: DEFINITION interface concepts END comment

{

definition.str_value = ["\n", definition.indent,
"DEFINITION ", interface.str value,
concepts.str_value,"\n", "END", comment.str value,

u\nn , n\nn] :
}
Figure 3.10 Str_value Example |
6. Length

Length is short for number of characters long. It
is the number of printable characters in a given production
rule. It is a synthesized attribute with an integer value,
which is wused to determine if an expression will fit on the

remainder of the current line. Length is important because

47

LT ‘

it counts the actual number of characters ignoring possible
padding, carriage returns, or line feeds. It is utilized by
the expression production rule and production rules that
have comment as one of their nonterminal symbols. Figure

3.11 shows examples of the attribute length.

expression
: 'S$' expression
(
expression[l).length = 1 + expression[2].length;
expression[2].bcursor = expression[l].bcursor + 1 + |
expression[2].length <= 80 |
~-> expression[l].bcursor + 1
len(expression{l].padding) + 1;

Figure 3.11 Length Example

D. PRETTY PRINTER RULES

The language dependent pretty printer has only a few
general rules of interest to the user of the pretty printer.
For an implementor or someone who wants to know more details
about the pretty printer, the specific rules define the
behavior of the pretty printer in detail.

1. Rules for Using the Pretty Printer

There are several general rules for the use of this
pretty printer. First the input must be syntactically
correct. If it is not correct the software will print out a
syntax error message (it may or may not print out any of the

input data). Figure 3.12 shows an example of what happens

48

when the pretty printer is supplied with syntactically

incorrect code.

1: MACHINE
~Syntax error

Note: 1 is the line number of the error
~ points to the point the syntax error
was detected

Figure 3.12 Syntactically Incorrect Code
Output Example

Secondly, the input can come from either a file or can
be typed from the terminal. The input code can be in any
format provided its syntax is correct. For most
applications it seems quite reasonable for the user to
already have a file created. It is extremely time consuming
to manually enter the code each time, not to speak of the
likelihood of typing mistakes which will force the user to
start over again. It is highly recommended that the input
come from a file.

The pretty printer is invoked in one of two ways. The
first method is by typing the file name of the compiled Spec
code followed by a file name with a set of options. The
possible options that are available are shown in Figure 3.13
[Ref. 9:pp. 23-24].

The second method to invoke the pretty printer is to
type the file name of the compiled Spec code, a carriage

return and then manually enter all of the code for the

49

input from the keyboard. Wwhen finished type "control d" and
the output will appear at the standard output. Figure 3.14
shows an example of executing the pretty printer with both

of the methods described. The name of the compiled Kodiyak

code for the pretty printer is stored in the file printer
and the name of the input file is SAMPLE (when one is
specified). An explanation of the different commands

invoked follow Figure 3.14.

-h Print out a list of legal options.

file Read input from "file"rather than the standard
input

-e Continue attribute evaluation even after an

error occurs. This is useful when debugging |
attribute definitions.

-1 Print out all tokens as they are scanned.

-y Print out all grammar rule reductions as they
occur.

-L Turn on LEX's debugging features.

-Y Turn on YACC's debugging features.

-C Generate a core image when a run-time error
occurs

-s Print out storage statistics after all

attribute evaluations is completed.

-o file Divert the standard output to "file".

Figure 3.13 Printer Options

50

A ,

printer SAMPLE j
B |

printer SAMPLE -o OUTPUT i
c

printer -h
D

printer SAMPLE -y
E

printer

Figure 3.14 Invoking the Code Example
—

Part A invokes the pretty printer using the input file
SAMPLE and the formatted output will be printed to the
standard output. Part B invokes the pretty printer using
the input file SAMPLE and the formatted output will be sent
to the file OUTPUT. Part C invokes the pretty printer but
in this case a 1list of the options that are available will
be printed. The 1list printed is similar to Figure 3.13.
Part D invokes the pretty printer using the input file
SAMPLE but in this case it will print out all grammar rule
reductions as they occur. This may assist in diagnosing
syntax errors. Part E invokes the pretty printer with the
input coming from the terminal. The user must type in the
necessary code followed by a "control d" to exit. Output

will go to the standard output.

51

2. Rules for Implementing the Pretty Printer

The above section looked at the general rules for
the successful operation of the pretty printer. Those are
the only rules the user needs to know to use the pretty
printer. An implementor or someone who may want to know
more details will be interested in the specific rules for
the pretty printer. There are four specific implementation
rules. These rules with their guidelines and exceptions
explain the complete operation of this language dependent
pretty printer. The four rules that will be explained in
detail deal with:

) Keywords
) Terminal symbols
) Nonterminal symbols
) Comments
a. Keyword Rule

Keywords are special reserved words in Spec.
All keywords are capitalized. All the other tokens in the
language can use uppercase oOr lowercase letters or a
combination of the two, but all keywords are distinguished
by the use of all uppercase letters. Also as noted earlier
there are three types of keywords:

(1) General keywords
(2) Expression keywords
(3) Special keywords
The rule for general keywords states the output

consists of a carriage return, line feed, current

production rule indenting and then the keyword. The rule

52

for expression keywords states that these symbols are to be
treated exactly the same as a terminal symbol. See the
following section for the terminal symbol rule.

All special keywords appear after a general
keyword. RENAME always proceeds AS, IF always proceeds FI
and DO always proceeds OD. For these special keywords the
rule states if room allows the special keyword will appear
on the same line as the general keyword otherwise the
special keyword will appear directly beneath the general
keyword (on the following 1line) at the same degree of
indentation.

The exceptions to the above three rules are few
but are extremely important to the pretty printer. First,
only the first general keyword is effected by the rule for
general keywords when two general keywords appear one after
the other. This saves an unnecessary carriage return and
line feed. Second, all three rules ere ignored when any
type of a keyword directly follows a terminal symbol. 1In
this case the rule for that keyword type will be followed
only if the keyword will not fit on the current line.
Figure 3.15 summarizes the three keyword rules and the
exceptions to these keywords rules.

b. Terminal Rule

A terminal symbol is defined as a symbol that

can appear only on the right side of a production rule [Ref.

6:p. 97)] or as a primitive symbol of the language [Ref. 5:p.

53

3

T‘

. 77] (i.e., cannot be reduced any further). Keywords by this
definition are terminals but in this implementation keywords
_l are considered a separate category of symbols.
RULE 1
The rule for a general keyword states the output

consists of a carriage return, a line feed, an
associated production rule indentation and the
keyword (with the keyword all in capital letters).

h RULE 2
Expression keywords are treated like terminal
symbols. (See terminal symbol rule).

RULE 3
All special keywords follow a general keyword.
The special keyword appears on the same line as the
general keyword if room permits; otherwise, the
special keyword will appear directly beneath the
general keyword at the same degree of indentation

EXCEPTIONS

1.
When two general keywords appear in a row only the
first general keyword follows the rule for general
keywords. This rule is ignored by the second keyword. !

When any keyword appears after a terminal symbol
all three rules are ignored. The rules are only
followed if the keyword will not fit on the current
line.

Figure 3.15 Keyword Rules and Exceptions

J

In this implementation there are two types of
terminal symbols. They are constant length terminal symbol
(CL terminal) and variable 1length terminal symbol (VL
terminaly. The CL terminal symbols (those with symbol

values different from their symbol names) are shown in

54

.....

Figure 3.16 and the CL terminal symbols (those with the same
symbol name and value) are shown in Figure 3.17. The VL
terminal symbols involve the use of the built in attribute
%text. The six VL terminal symbols along with the way they

appear in the language are shown in Figure 3.18.

Name vValue Name value

AND & IFF <{=>

OR | NOT ~

IMPLIES =) LE (=

GE >= NE ~=

NLT ~< NGT ~>

NLE ~{= NGE ~>=

EQV == NEQVY ~==

RANGE . APPEND | |

ARROW ~> MOD \\

EXP * % BIND L

i

Figure 3.16 CL Terminal Symbols '

' Symbol values Different from Symbol Name

The terminal symbol rule checks for the end of
line. When a terminal symbol (either kind) is encountered
an end of line check is done. This length check is to see
if the maximum line length will be exceeded if the terminal
symbol is added to the str_value. This general rule for
terminal symbols can be divided into two cases depending on
the value of the length check sum. If this length check sum
is less than or equal to the line 1length than the value of

the production rule attribute str_value is the value of the

55

*-'

BN

terminal symbol (depending on the terminal symbol it may be
concatenated with one blank character). If the length check
sum is greater than 80 then the value of the production rule
attribute str_value 1is the concatenation of a carriage
return, line feed, production rule padding and the value of
the terminal symbol (dependi:.g of the terminal symbol it may

be concatenated with one blank character).

= ¢
(>
) -
H +
; *
(/
) U
5]
$ [.
e ! i
MOD ;
IN |

Figure 3.17 CL Terminal Symbols
Symbol Name Same as Symbol value

Terminal Symbol Name Appearance in Code
NAME NAME.%text
INTEGER-LITERAL INTEGER-LITERAL.%text
REAL~-LITERAL REAL-LITERAL.%text
CHAR-LITERAL CHAR-LITERAL.%text
STRING_LITERAL STRING-LITERAL.%text
COMMENT COMMENT .%text

Figure 3.18 VL Terminal Symbols

56

The length check sum is computed in one of two
ways depending upon which production rule is being used. 1If
the terminal symbol (either kind) is not part of an
expression production than the length check sum is the sum
of the current cursor position, the 1length of the terminal
symbol and one (for a blank space). Otherwise, if the
terminal symbol (either kind) is part of the expression
production rule then the 1length check sum includes the sum
of the current cursor position, the 1length of the terminal
symbol value, one (for a blank character) and the length of
the symbol or symbol to the right of the terminal symbol in
the production rule. Figure 3.19 summarizes the general
rule for the terminal symbols along with the rules for
calculating the length check sum.

There are three exceptions to the terminal
symbol rule. First when a nonterminal symbol (a symbol that
can be reduced) precedes a VL terminal symbol (which
precedes a CL terminal symbol), the 1length check sum
includes the length of the VL terminal symbol as well as the
CL terminal symbol.

The second exception to this rule is when CL
terminal symbols appear in pairs. The only CL terminal
symbols this exception applies to are the right and left
parenthesis and the right and 1left square bracket. The
right parenthesis and the right square bracket do not cause

a check for the end of line.

57

The general rule when encountering a terminal symbol ;
(both CL & VL) is to do a check for the end of the line. |

|
LENGTH CHECK SUM <= 80 |

str_value = terminal symbol value (may have one blank l
character at end) 1

LENGTH CHECK SUM > 80
str_value = [carriage return, line feed, production
rule padding, terminal symbol value]
(may have one blank character at end)

TERMINAL SYMBOL PART OF EXPRESSION PRODUCTION RULE
length check sum = current cursor position +
length of terminal symbol +
(possibly one for blank space)

TERMINAL SYMBOL NOT PART OF EXPRESSION PRODUCTION RULE
length check sum = current cursor position +
length of terminal symbol +
length of rule(s) to the rule of
the terminal symbol +
(possible one for blank space)

Figure 3.19 Terminal Symbol Rule and Length Check
Sum Calculation

The third exception occurs when a comment
immediately precedes a terminal symbol (either kind). A
check 1is first done to see if a comment exists. If a
comment does not exist the general rule 1is followed,
otherwise the production rule str_value includes a carriage
return, line feed, production rule padding and the value of
the terminal symbol (depending on the terminal symbol may

include one blank character). Figure 3.20 outlines the

58

three exceptions to the general rule. Figures 3.21 and 3.22

show examples of the terminal symbol rule and exceptions.

1. Nonterminal symbol proceeding a VL terminal
symbol (with the VL terminal symbol proceeding
a CL terminal symbol)

length check sum = current cursor position +
length of the VL terminal symbol +
length of the CL terminal symbol +
one (blank between terminal
symbols)

2. CL terminal symbols appearing in pairs
(applies to ")" and "]" only)

These two symbols do not cause a end of line check |

3. Comment immediately precedes a terminal symbol ?

1 If comment does not exist follow general rule
else
str_value = [carriage return, line feeqd,
production rule padding,
terminal symbol value]
(possibly one blank character

Figure 3.20 Terminal Rule Exceptions ;

c. Nonterminal Rule
The rule for nonterminal symbols is the easiest
of all the rules. A nonterminal symbol in a production rule
will specify the value of all attributes that its own
production rule needs and those values of the attributes
that its children's production rules may need. Depending on

which nonterminal symbol is involved any or all of the six

59

I\ 4

T
H I

i

A.

B.

C.

Length check with expression production

expression
: NOT expression

expression[l].str_value = expression[l].bcursor +
1 + expression{2].length <= 80
-> ["~", expression[2].str value]
["\n",expression[l].padding,"~",
expression([2].str_value];
}

Length check without expression production

field list
: field 1list ',' field

field list[l].str _value =
field list[2].ecursor + 2 <= 80
-> [field_list{2].str_value,", ",field.str_value]
[field list[2].str_value,", ", "\n",
field list[1l].padding,field.str_value];
}

Length check with first exception

expression

: expression '.' NAME

{
expression{l].str_value = expression[2].ecursor +

1 + len(NAME%text) <= 80
-> [expression[2].str_value, "." NAME.%text]
[expression[2].str value, ".","\n",
expression[l].padding,NAME.%text];
}

Figure 3.21 Terminal Symbol Examples

60

A,

Length check w‘th second exception

actual_parameters
: T(' arg_list ')

actual_parameters.str_value =
actual_ parameters.bcursor + 1 < 80
~> ["(", arg_list.str_value,")"]
["\n",actual_parameters. paddlng ",
arg_list.str value,"}"];

}
B. Comment before terminal symbol
concept
CONCEPT formal pa ':' type spec
{

concept.str _value = formal pa.ecursor < 0%

-> ["\n","\n",concept.indent, CONCEPT,
formal_pa.str_value,"\n",forma_pa.padding,
“: ",type spec.str value]

formal pa.ecursor + 2 <= 80

-> ["\n","\n",concept.indent, CONCEPT,
formal pa.str value,": ",
type_spec.str value]

("\n","\n",concept.indent, CONCEPT,
formal pa.str_value,"\n", forma_pa.padding,
Wy m type spec.str value]

Figure 3.22 Terminal Symbol Examples

61

attributes that this implementation wuses can be specified.
Not all of the nonterminal symbols use all of the six
attributes. Figure 3.23 shows some examples of how
attributes are used with the nonterminal symbols. In the
first example in Figure 3.23 the nonterminal symbol
"name_list" only needs two attributes and "comment" needs
only one attribute. In the second example in Figure 3.23
the nonterminal symbol "interface" does not need or use the
attribute indent but the nonterminals "imports", "inherits"
and "export" need indent therefore the parent 1is passing
along its value of indent to its children.
d. Comment Rule

The rule for a comment concern where a comment
can and cannot be placed. This rule is language dependent.
In Spec comments can occur after any nonterminal symbol but
comments cannot occur immediately after any terminal symbol.
See Figures 3.16, 3.17 and 3.18 for the list of CL terminal
symbols and values and VL terminal symbols. There are two
exceptions to this rule. First, a comment can occur after
the CL terminal symbol that comes as the second in a pair
(i.e., ")" and "]") when the production rule that involves
the CL terminal symbol does not have a nonterminal symbol
immediately following the CL terminal symbol. Second, a
comment cannot occur immediately after a keyword. Figure
3.24 summarizes the comment rule and its two exceptions.

Note this is strictly dependent on the language implemented.

62

A nonterminal symbol will specify the value of all
attributes that its own production rule needs and
those attributes that any of its children may neegd.

EXAMPLE ONE

hide
HIDE name_list comment

name_list.bcursor = hide.bcursor + 5;
name_list.padding = [hide.padding, spaces(5);
comment.bcursor = name_list.ecursor;
hide.str_value = ["\n", hide.indent, "HIDE ",
name_list.str_value,
comment.str_value];

}
EXAMPLE TWO
interface
: NAME inherits imports export comment
{
inherits.indent = [interface.indent, spaces(3)];
export.indent = [interface.indent, spaces(3)];
imports.indent = [interface.indent, spaces(3)];
interface.str_value = [NAME.%text,
inherits.str_value,
imports.str_value,
export.str_value,
comment.str_value];
)

Figure 3.23 Nonterminal Rule and Examples

63

A comment can occur after any nonterminal symbol but
cannot occur immediately after any terminal symbol
(either kind).

EXCEPTIONS
A. A comment can occur after the CL
terminal symbol ")" or "]" if the production rule

does not have a nonterminal symbol immediately
following either of these CL terminal symbols.

B. A comment cannot occur immediately after any
keyword.

Figure 3.24 Comment Rule

64

IV. CONCLUSIONS

The conclusions of this thesis address the issues of
the specific implementation of one language dependent
pretty printer and how this can be extended to generate a
general purpose language independent pretty printer. What
was learned through the development, design and
implementation of this pretty printer can be abstracted,
generalized and expanded to create a language independent

pretty printer.

A. IMPACT OF DESIGN DECISIONS
The major impact on any and all of the design decisions

relates to readability, understandability, portability and
ease in modifying. Can what was done for a single
implementation be of any great value? The answer to this
question is yes. Can all the rules and exceptions be
abstracted and extrapolated? The issues surrounding the
design decisions made in this particular implementation and
the ability to extend what was 1learned center around four
key ideas. These four key ideas are:

) Global parameters
2) Attributes

i

Standardization
Comments

65

L _SERNSS 4

1. Global Parameters

In the normal sense of global parameters, such as
in a Pascal program, this implementation does not have any
global parameters. There is no method available to declare
a global parameter at the beginning of the program due to
the tree 1like structure that is used in parsing and
evaluating the pretty printer. On the other hand this
implementation does have "global parameters" to a limited
degree. The line length and therefore the right-hand margin
is set on 80. Any reference to the right-hand margin is
made in reference to this global parameter. One global
change to the value 80 (with an editor) can globally change
the width of the print out and thereby changing the value of
the right-hand margin.

The global indentation change can also be easily made.
SPACES(3) is wused throughout to handle the indentation. 1If
the indentation width was changed to four, for instance, one
simple global change with an editor could change all
SPACES(3) to SPACES(4).

The use of global parameters as explained above
increases the portability of the code. Additionally, it
increases the adaptability and ease of modification of this
language dependent pretty printer to different users
preferences and desires. The pretty printer code can also
be modified to accept variable parameter values from the

command line if the computer system wutilized supports that

66

feature (i.e., printer -1 80, printer -s 4). 1In this case
Kodiyak would have to be modified to support the option of
command line inputs.
2. Attributes

There are only a small number of attributes. These
six attributes are:
) Bcursor
) Ecursor
) Padding
) Indent
)
)

Str_value
Length

(1
(2
(3
(4
(5
(6
Each attribute is unique and handles one specific
well defined function. If one attribute (or the concept
behind it) is changed or altered the other attributes will
not be affected. This is true for all except bcursor and
ecursor. These two attributes go hand in hand and changing
one will greatly affect the other.
3. Standards
There |is standardization of the implementation
throughout the entire code for the pretty printer. With a
given number of general rules and a few exceptions the
implementation follows a fairly standard organization (i.e.,
each production rule is basically implemented in the same
way) . With standardization of rules generic rules can
easily be derived from the specific rules.

In addition to standardization in the pretty

printer code, there are also standards in computer science

67

-"r-v

that are adopted by the implementation. This includes the
rule of thumb standard for the 1length of the standard
indentation unit.
4. Comments
Allowing for freedom of style in comments allows
comments to be almost any place within the code. Comments
add tremendously to the overall readability of program code.
The implementation allows for the widest variety of comments
within reason. wWithin reason means that there are times
when you do not want a comment. As an example a comment is

not a good idea in the middle of a mathematical expression.

B. EVALUATION OF THE PRETTY PRINTER

The qualities of the pretty printer deal with the
software, documentation and devices used in the actual
development and execution of the pretty printer. The
qualities to be concerned with center around the following
three categories:

(1) Kodiyak compiler

E%; Syntax errors

Software extensions

1. Kodiyak Compiller

The Kodiyak compiler is a complex piece of software
but when modifications were made there was no apparent
change in the efficiency and no slow down in the processing
time. To make a change to the compiler one of its many

related files (as shown in Figure 4.1) was modified and then

68

the compiler was recompiled. Recompiling is a small
sacrifice when making changes to an extremely complicated

piece of software.

NAME PURPOSE
locallib.c helper functions for the
Kodiyak compiler

man.entry Unix Programmer's Manual
k software driver
kclib.c library functions and C definitions
kmain.c main routine for Kodiyak programs |
kodiyak.k Kodiyak translator ;
kodiyak.m4 Kodiyak translator 5
kscript executes the translator .
mac.m4 macros

Figure 4.1 Kodiyak Files |

With everything that is good there are also some
drawbacks. Changes to the compiler are easy to make, but
sometimes it requires a change to the Kodiyak code with an
associated recompiling of that code and other times the
change requires a modification to the file that controls the
overall execution of the Kodiyak compiler (file named k).
Figure 4.2 shows some examples of these situations with the
resulting actions needed to correct the problems.

Another area of concern with the Kodiyak compiler
is the error messages generated. Understandably the Kodiyak
code and documentation was written by one person within a
six month time frame. Even so the error messages generated

are hard to understand and even harder to correct. There is

69

a lack of standardization when an error had to be corrected.
The user has to search through the multiple related files
(those listed in Figure 4.1) to find the solution to a given
error. Once the correction to the error has been found the

most obvious correction may not fix the problem.

1. Table overflow
Change the size of the table in file k

2. Memory overflow
Change the value of associated variable in
file kclib.c

Figure 4.2 Compiler Change Examples

As an example consider the following. An error
appeared that stated "OUT OF XNODESPACE". The solution was
found in file kclib.c. The documentation [Ref. 11] stated:

"The following definitions may be over-ridden from the C
compiler's command line. This allows users to increase or
decrease the space allocated to each data type according
to his needs. cc -DXPAIRSPACE=50000 agprog.c -o agprog
would give the user's program 50,000 pairs to wuse instead
to the 20,000 allocated by default."

This feature did not work as advertised. After
trial and error the solution found involved changing the
value of XNODESPACE in two separate locations in the file
kclib.c and then recompiling the Kodiyak compiler. That

solution was not written anywhere or even suggested.

2. Syntax Errors

Syntax errors are concerned with the errors in the

syntax of the input code. These syntax errors can basically

70

be of two types. There are errors caused by typing mistakes
and errors concerned with missing grammar rule(s) in the
language. These syntax errors can be either easy or hard to
find.

When the Kodiyak compiler finds any type of error
it doesn't guess what the user meant. It crashes and prints
an error message. The difficulty involves tracking down the

actual error. Figure 4.3 shows examples of typical error

messages.

1. Spelling or typing error

l: MESAGE
~Syntax error

2. Gramar rule missing/Input does not match grammar

3: MESSAGE FUNCTION ?
~Syntax error

Figure 4.3 Typical Error Messages 1

As Figure 4.3 shows the error messages can be quite
cryptic. In all cases the error occurs somewhere after the
place that the syntax error pointer points. The error in
fact may be a several lines further down in the code because
the language is parsed in a tree like structure. The error
message pointer points to the production rule that the
pretty printer code was parsing at the time the error
occurred (the actual error can be a descendant of the

production rule).

71

3. Software Extensions

Software extensions are concerned with adding
software to the actual Kodiyak software. The Kodiyak
software is quite adaptable and has allowed for user defined
functions and applications to be added to the existing
software. The only drawback to this is that the user
defined software must be added to the end of an already
existing set of library functions. Through experience it
has been determined that if the user-defined functions are
written in a separate file and declared in an option added
to the file k (that directs the Kodiyak) incompatibility
error messages will appear. If the same code is placed at
the end of the file kclib.c the Kodiyak has no problems with
the user defined functions and everything runs smoothly.

One additional note about the user defined
functions. This allows the wuser to write any type of
function that is desired as long as it 1is written is C.
With this implementation a new function (named SPACES) was
created to change an integer into the corresponding number
of blank characters. Writing a fairly efficient small loop
function seemed quite easy until the code was compiled.
Then the problem of incompatibility arose between the
existing code and the new function written in C. To solve
this compatibility problem an inefficient function was
written to handle the conversion of integers zero through 80

to a corresponding string of blank characters. If the line

72

length is increased above 80 the function SPACES will have

to modified to handle all integer values greater than 80.

C. ANALYSIS OF CODE
The analysis of the pretty printer code has to look at
three general areas. These three areas are:
(1) Efficiency of the code

(2) Readability/understandability of the code
(3) Ease of modification

1. Efficiency
The efficiency of the pretty printer must not only
look at the pretty printer code but also the Kodiyak
compiler. The Kodiyak compiler was not written to be
optimized. with the 1limited time that was used to design
and write the code it is really amazing that it 1is as fast
as it 1s. Figure 4.4 shows some statistics for file length

compared with time to format and print the reformatted file.

FILE LENGTH (bytes) TIME (seconds)
70 1.4
151 2.2 j
457 5.3
819 8.8
1594 18.1 |
2706 32.7 |
4275 46.8
5428 62.0

The time should be considered in relative terms and
not absolute values

Figure 4.4 Pretty Printer Statistics

73

—d

r..,..m

Along the same 1lines the pretty printer was not
written in any optimized form. The function SPACES is not
efficiently coded. It is efficient in time but not in
space. The most important point is that although it may not
be efficient it works. Figure 4.5 shows a segment of the
SPACES function. If efficiency is an important issue this
function can be modified to improve its efficiency. Also,
as stated earlier, if the 1line length is increased this

function will also have to be modified.

xstring vspaces (lenstr)
int lenstr;
{
int x;
x = lenstr; ‘
switch(x) f
(,
case 0 : return (xstring) "“; 1
break; 7
case 1 : return (xstring) " *;
break;
case 2 : return (xstring) " *; ;
break:; |
case 3 : return (xstring) " ", !
break;
. 1
default : return (xstring) "";
break;
) |
} |
|
Figure 4.5 Spaces |

74

2. Readability

Readability is concerned with the wuser being able
to read the code for the pretty printer and without too much
effort understand exactly what is going on. Increasing the
code's readability is the fact that there are only six
attributes each with a unique function that does not change.
Additionally, standard rules are followed and there is a
standardization among the implementation of the production
rules. This basically says if the user can understand one
production rule he can probably understand the majority of
them. There are a few special rules (and some exceptions)
that may take the wuser a 1little longer to understand but
overall the pretty printer is fairly straight forward.

Since it has few attributes and only uses simple
mathematics and string concatenation the code is fairly
simple. Probably the most complex notation used involves
the if-then-else and if-then-else_if evaluation rules. The
syntax for these constructs are a little different but after
reading through a few of them they become straightforward
(Figure 2.8 explains the syntax).

Since there is standardization and limited
complexity it would appear that the pretty printer code
should be fairly easy to read and understand. One drawback
is by increasing readability some efficiency has been lost.
Since this is a research project readability and

understandability of the Kodiyak compiler and the pretty

75

printer are more important than optimization. 1Increasing
optimization often decreases the readability of any code.
The pretty printer code is fairly straight forward and very
readable.

3. Ease of Modification

For any number of reasons the existing code may be
changed. Is this change an easy and uncomplicated
undertaking and/or is it going to be time consuming? The
pretty printer code consists of six attributes and simple
mathematics. Each attribute is unique and its function or
value does not affect other attributes (except bcursor and
ecursor which depend on each other). Therefore changing the
meaning of one attribute should be straight forward and easy
to implement. To add an additional attribute (similar to
the type already implemented) will be time consuming (typing
time) but fairly simple. On the other hand to add an
attribute that uses higher order functions or depends on the
value of existing attribute values will be time consuming
and complex (each production rule will have to be looked at
individually).

From experience the effort in making changes is
time consuming but not very complicated. As an example, a
modification was made in the implementation of the
production rules (and the children of the production rules)
using the symbol "expression". Prior to the change the end

of line check did not include the use of the length

attribute. This length attribute was added to all
production rules very easily. It was time consuming because
of the major edit to the pretty printer code and the need to
verify all corrections/additions were made. The change

itself was a very simple modification.

D. APPLICATION EXTENSION

It is highly desirable to apply the techniques wused in
this implementation to the development of a language
independent pretty printer. Before a generalization can be
reached a careful analysis of the existing code must be
completed.

1. Pretty Printer Code Analysis

Chapter three covers the exact design and
implementation in detail. Specifically four general rules
for this pretty printer are explained along with all
exceptions to each of the four general rules. This section
looks at the overall development of these rules and
generalizes the method used to apply to any language.

Examination of the pretty printer production rules,
looking at how each production rule symbol is implemented,
leads to a list of generalized symbol categories. Each SPEC
language symbol uniquely fits into one of these four
categories (as listed in Figure 4.6).

An analysis of the production rules of SPEC

provides the 1insight into the development of the four

77

——— AR,

AW

38

p generalized symbol categories listed in Figure 4.6. Look at
the production rules as collections of symbol categories
. instead of individual rules. In other words 1look at the
production rules as combinations of keywords (all three
types), terminals (CL and VL) and nonterminals. 1In this
. way generalizations can be reached. Keywords (general,

expression and special) are 1listed in Figures 3.3, 3.4 and

3.5. All the terminal symbols of the language are listed in
Figures 3.16, 3.17 and 3.18. Review of these figures and
the pretty printer code 1leads to the development of the
general symbol categories for the production rules. Figure
4.7 1lists the production rules from the SPEC grammar
transposed into standard forms using these symbol
categories. Note that Figure 4.7 contains keywords (all
three types grouped under one heading), CL and VL terminal

symbols and nonterminals.

. Keyword
. Terminal |
. Comment
. Nonterminal |

_w -

Figure 4.6 General Symbol Categories

By referring back to the implementation rules for

the pretty printer (Figures 3.15, 3.19, 3.20, 3.23 and

78

1. KEYWORD
2. CL-terminal
3. VL-terminal
4. noriterminal(s)
5. CL-terminal VL-terminal
6. CL-terminal nonterminal(s)
7. nonterminal(s) VL-terminal
8. VL-terminal nonterminal(s)
9. KEYWORD nonterminal(s)
10. KEYWORD nonterminal(s) KEYWORD
nonterminal(s) CL-terminal VL-terminal
11. nonterminal(s) KEYWORD nonterminal(s)
12. KEYWORD VL-terminal nonterminal(s)
13. VL-terminal CL-terminal nonterminal(s)
14. CL-terminal nonterminal(s) CL-terminal(¥*)
15. nonterminal(s) CL-terminal nonterminal(s)
l16. CL-terminal VL-terminal CL-terminal nonterminal(s)
17. CL-terminal nonterminal(s) CL-terminal
nonterminal (s) (*)
18. KEYWORD nonterminal(s) KEYWORD nonterminal (s) :
19. KEYWORD nonterminal(s) CL-terminal nonterminal(s) ;
20. nonterminal(s) CL-terminal nonterminal(s)
CL-terminal (*)
21. nonterminal(s) CL-terminal nonterminal(s) :
CL-terminal nonterminal(s) CL-terminal (*) |
22. KEYWORD VL-terminal nonterminal(s) CL-terminal :
nonterminal (s) \
23. KEYWORD VL-terminal nonterminal(s) KEYWORD i
nonterminal(s)
24. CL-terminal nonterminal(s) CL-terminal nonterminal(s) .
CL-terminal (*) :
25. KEYWORD CL-terminal nonterminal(s) CL-terminal ‘
nonterminal(s) (*) :
26. nonterminal(s) KEYWORD nonterminal(s) KEYWORD i
nonterminal(s) 1
27. nonterminal(s) KEYWORD VL-terminal KEYWORD
VL-terminal nonterminal(s)
28. KEYWORD nonterminal(s) KEYWORD nonterminals(s)
KEYWORD nonterminal(s) KEYWORD
29. nonterminal(s) KEYWORD nonterminal(s) CL-terminal
nonterminal (s) KEYWORD nonterminal(s)
(*)VL-terminal symbols are matched pairs (i.e., (,).[.,]),
L Figure 4.7 Standard Forms

79

3.24) more generalizations can be made. VL-terminal and
CL-terminal are implemented exactly the same way. The
distinction between the two symbols exists in the
exceptions to the terminal symbol rule. Therefore CL-
terminal and VL-terminal symbols can be combined into the
category terminal. Figure 4.7 grouped the symbol comment as
a nonterminal. Because comment is implemented differently
than a nonterminal, comment needs to be in a separate
category. None of the remaining symbols can be combined.
This leads to the modification of the standard forms into a
new list of standard forms as listed in Figures 4.8 and 4.9.
It can be concluded that each production rule is a
combination of one or more of the four general symbol
categories (listed in Figure 4.6) repeated one or more
times.

2. Language Independent Pretty Printer

The approach wused in this particular implementation
is very regular and could be applied mechanically by a
preprocessor. All the information that the preprocessor
obtained would be translated and sent to the Kodiyak
compiler. The preprocessor is responsible for the language
dependent questions as well as any special features the user
wanted considered for their particular implementation.
Language dependent questions include such items as file name
containing the grammar of the language to be pretty

printed, keyword specifications, terminal symbols and

80

\J

KEYWORD

terminal(s)

nonterminal (s)

nonterminal(s) terminal (s)

terminal(s) nonterminal(s) 1

KEYWORD nonterminal(s) |

KEYWORD nonterminal(s) KEYWORD

nonterminal (s) KEYWORD nonterminal(s)

KEYWORD terminal nonterminal(s)

10. terminal nonterminal(s) terminal(*)

11. nonterminal(s) terminal nonterminal(s)

12. terminal nonterminal(s) terminal nonterminal(s) (*)

13. nonterminal terminal nonterminal(s) terminal (*)

14. KEYWORD terminal nonterminal(s) KEYWORD
nonterminal(s)

15. nonterminal(s) KEYWORD nonterminal(s) KEYWORD i
nonterminal (s)

16. nonterminal(s) terminal nonterminal(s)
terminal nonterminal terminal(*)

17. KEYWORD nonterminal (s) KEYWORD nonterminals(s)

KEYWORD nonterminal(s) KEYWORD

¢« o o

WONOHUOTLE WD

(*)terminal symbols are matched pairs (i.e., (,).[.,])

|
Figure 4.8 Standard Forms Revised q
Without Comment Symbol E

8l

L e

WoO~JAON WD

11.
12.
13.
14.
15.
16.
17.
i8.
19.

20.

(*)terminal symbols are matched pairs (i.e., (.,).[.])

nonterminal(s) comment
comment nonterminal(s)
terminal(s) nonterminal(s) comment
KEYWORD nonterminal(s) comment
terminal nonterminal(s) terminal comment(*)
KEYWORD nonterminal (s) KEYWORD comment
nonterminal(s) terminal comment nonterminal
KEYWORD nonterminal(s) comment nonterminal(s) :
nonterminal (s) terminal comment nonterminal(s) !
comment |
KEYWORD terminal nonterminal(s) terminal comment (*)
KEYWORD nonterminal comment nonterminal(s) comment
nonterminal(s) KEYWORD nonterminal(s) KEYWORD comment
nonterminal (s) KEYWORD nonterminal comment
nonterminal(s) comment
KEYWORD nonterminal KEYWORD nonterminal comment
nonterminal (s)
nonterminal KEYWCRD terminal KEYWORD
terminal comment
KEYWORD nonterminal(s) terminal nonterminal
comment nonterminal
terminal nonterminal(s) terminal comment
nonterminal(s) terminal (*)
KEYWORD terminal nonterminal(s) terminal
nonterminal comment terminal (*)
nonterminal KEYWORD nonterminal(s) comment KEYWORD
nonterminal comment
nonterminal (s) KEYWORD nonterminal(s) terminal
nonterminal (s) comment nonterminal(s)
KEYWORD comment

Figure 4.9 Standard Forms Revised
With Comment Symbol

82

values, keyword types, paired terminal symbols, comment
symbol, etc. The grammar file should be formatted as
specified by the Kodiyak manual [Ref. 9:pp. 2-25]. Special
features would include such things as the standard
indentation, width of the paper, unusual 1lengths of tokens,
left-hand margin to start at a value other than one,
special handling for a grammar rule, etc.

Figure 4.10 shows how the preprocessor works. The
preprocessor could be either menu driven (asking a series of
questions) or a command line format could be wused (i.e., pp
grammarfilename -w 120 where pp invokes the preprocessor,

grammarfilename is the name of the file containing the

grammar and -w 120 states the line 1length 1is 120
characters). This method for invoking the preprocessor
would be system dependent. The preprocessor would take in

all necessary data, use a set of production rule and
generate an attribute grammar, format the attribute grammar
to be compatible with the Kodiyak compiler and transmit its
data to the Kodiyak compiler which in turn would produce a
working pretty printer for the desired language.

The rules used by the preprocessor to generate the
attribute grammar to be used by the Kodiyak compiler in
generating the language independent pretty printer are very
straight forward. Figure 4.11 shows the four rules needed

to implement a language independent pretty printer.

83

Grammar for !
language

|

User PREPROCESSOR
Input

for pretty printer

attribute grammar k—

|

KODIYAK COMPILER —
i
\
1

—

l
\
|
i
working | ‘
pretty printer \ %

Figure 4.10 Preprocessor i

Each production rule, for the given grammar, must
be transformed into a set of attribute equations to produce
the desired pretty printer code. The four language
independent rules listed in Figure 4.11 use the same
attributes used in the language dependent pretty printer
implementation. Each symbol in a production rule must be
categorized and then the associated rule for that symbol
must be applied.

As an example consider the production rule "X : A B
C D". The preprocessor first would determine the category

for each of the four symbols in this production rule. Next

84

P

1. X : Keyword
X.str_value = if standard
then ["\n",indent,keyword]
else if keyword fits on current line
then [keyword]
else ["\n",indent , keyword]
X.ecursor = if standard
then len(indent) + len(Keyword) ‘
else if keyword fits on current line ‘
then X.bcursor + len(keyword)
else len(indent) + len(keyword) !

2. X : Nonterminal
Nonterminal.bcursor = if (X.bcursor < 0)
then len(padding)
else X.bcursor
X.ecursor = Nonterminal.ecursor
Nonterminal.padding = X.padding
Nonterminal.indent = [X.indent, spaces(3)]
X.str_value = if (X.bcursor < 0)
then [padding,nonterminal.str_value
else nonterminal.str_value

3. X : Terminal
X.str_value = if (X.bcursor + len(terminal)) < END
then terminal
else ["\n",padding, terminal]
X.ecursor = if (X.bcursor + len(terminal)) < END
then X.bcursor + len(terminal)
else len(padding) + len(terminal)
* if paired terminal symbol check for <= END

i END = MAXIMUM LINE LENGTH

| 4. X : Comment

X.str_value = Comment.str_value

X.ecursor = if len(Comment.str value) > 0
then -1 (*comment existsx*)

else +1

Figure 4.11 Language Independent Rules

85

T g Y= e

the four rules, listed in Figure 4.11, would be applied to
each symbol in the production rule. Finally, a set of
attribute equations is generated. Figure 4.12 outlines the
details of the generation of the attribute equations for

-

this example.

PRODUCTION RULE -> X:ABCD

1. Assume A is a keyword (standard), B is a nonterminal
C is a terminal, D is a comment

2. A.str_value = ["\n",X.indent, Keyword]
A.ecursor = len(X.indent) + len(Keyword)

3. B.bcursor = A.ecursor
Nonterminal.bcursor = if (B.bcursor < 0)
then len(padding)
else B.bcursor
Nonterminal.padding = X.padding
Nonterminal.indent = [X.indent, " "] i
B.str_value = if (B.bcursor < 0)
then (X.padding,Nonterminal.str_value]
else Nonterminal.str_value

|
4. C.bcursor = B.ecursor |
C.str_value = if (C.bcursor + len(terminal)) < END J
then terminal i
else ["\n",X.padding,terminal)
C.ecursor = if (C.bcursor + len(terminal)) < END
then C.bcursor + len(terminal)
else len(X.padding) + len(terminal)

5. D.str_value = Comment.str_value
D.ecursor = if len(Comment.str_value) > 0
then -1
else +1

6. X.str_value = [A.str value,B.str_value,C.str_value,
D.str_value]
X.ecursor = D.ecursor

Figure 4.12 Attribute Equation Generation Example

86

In conclusion it is feasible to use Kodiyak to make
a language independent pretty printer generator. In order
to do this a preprocessor is needed to gather information on
the specific language implementation and any requirements
from the user. The preprocessor will take its gathered
information, translate it into an attribute grammar for
pretty printer (using rules outlined in Figure 4.11) and
transmit the attribute grammar to the Kodiyak compiler.
The Kodiyak compiler will produce the executable code for a
pretty printer for the desired input language. with this
method only one pretty printer needs to be written and

multiple languages can be pretty printed.

87

i\ .4

APPENDIX A

| version stamp $Header: spec.k,v 1.5 88/02/16 13:27:58 berzins Exp §

| In the grammar, comments go from a "|" to the end of the lins.

! Terminal symbols are entirely upper case or enclosed In single quotes ().

| Nonterminal symbols are entirely lower case.

{ Lexical character ciasses start with & captial letter and are enclosed in (}.
| In a regular expression, X+ means one or more x's.

| In a regular expression, x* means zero or more Xx's.

| In a regular expression, [xyz) means x or y or 2.

| In a regular expression, [“xyz] means any character except x or y or z.

| In a regular expression, [a-2] means any character between a and z.

I In a regular expression, . means any character except newline.

| definitlions of lexical classes

Xdefine Digit :[0-9)

%define Int :(DIgit)+

Xdefine Letter :[(a-2A-7]

Xdefine Alpha :({Letter}i{DIgit}i"_*)

Xdefine Blank :[\t\n]

Xdef ine Quote HE/

Xdef ine Backslash < "\\"

Xdef Ine Char :([*"\\]|(Backsiash}{Quote}|(Backslash}(Backsiash})

| definitions of white space and comments

:{Blank)}+
L A

| definitions of compound symbols and keywords

AND 1 8"
OR S
NOT Ha
IMPLIES e
IFF i
LE :Mem”
GE ">a”
NE "
NLT e
NGT S
NLE "Tem”
NGE "T>e"

88

49

EQv
NEQV

RANGE
APPEND
WOD
£XP

BIND
ARROW

IF
THEN
ELSE
IN

U

ALL
SOME
NUMBER
SUM
PRODUCT
SET

MAX IMUM
MININUM
UNION
INTERSECT ON
SUCH
ELSE_IF

AS

CHOCSE
CONCEPT
DEFINITION
DELAY

oo

END
EXCEPTION
EXPORT

Fi
FOREACH
FROM
FUNCTION
GENERATE
HIDE
IMPORT
INHERIT
INITIALLY
INSTANCE
INVAR I ANT
ITERATOR

:(Backstash) {MOD

:|F
:THEN
:ELSE
:IN
:U

:ALL

:SOME

:NUMBER

:SUM

:PRODUCT

:SET

:MAX IMUM
:MINIMUM

:UNION

: INTERSECTION
:SUCH{B lank }*THAT
:ELSE(Blank}*IF

:AS
:CHOOSE
:CONCEPT
:DEFINITION
:DELAY

:00

:END
:EXCEPTION
:EXPORT
:Fl
:FOREACH
:FROM
:FUNCT ION
:GENERATE
:HIDE

: IMPORT

+ INHERIT
<INITIALLY
: INSTANCE
: INVARIANT
+ ITERATOR

89

FI-II-I!Ill-Il-llllllllllIIIlllllIlIllllIIllIllllllIlIlIllIllllllllllllllllllllllllllllIII-II-I-—‘

MACH I NE
. MESSAGE
MODEL
il' 00
' o
OPERATOR
OTHERW ISE
PER 0D

. RENAME
REPLY
SEND

STATE
TEMPORAL
TIME

10
TRANSACT ION
TRANS I TION
TYPE

VALUE
VIRTUAL
WHEN

WHERE

SECONDS
MINUTES
HOURS
DAYS
WEEKS
NANOSEC
MICROSEC
MILLISEC

REAL ! ITERAL
CHAR_L ITERAL

NAME

Xleft
Xleft
Yleft
Xleft
Xleft
Xleft
Xloft
Yleft
Xleft

:MACH I NE
:MESSAGE
:MODEL

:00

:0F
:0PERATOR
:OTHERWISE
:PERIOD
:RENAME
:REPLY
:SEND
:STATE

: TEMPORAL
:TIME

:T0
:TRANSACT iON
:TRANSITION
:TYPE
:VALUE
:VIRTUAL
:WHEN
:WHERE

:SECONDS
:MINUTES
:HOURS
:DAYS
:WEEKS
:NANOSEC
:MICROSEC
:MILLISEC

INTEGER _LITERAL :(Int}

:{Int}"."{int)

RLEE BN

STRING_LITERAL :{Quote}{Char)*{Quote)

:{Letter}{Alpha)*

| operator precedences
| Xloft means 2+3+4 Is (2+3)+4.

37, VF, DO, EXCEPTION, NAME, SEMI;

"y, COMMA;

SUCH;

IFF;

IMPLIES;

0R;

AND;

NOT;

‘<", ">", "=’ LE, GE, NE, NLT, NGT, NLE, NGE, EQV, NEQV;

90

Xnonassoc IN, RANGE;

Xleft U, APPEND;
Xleft ‘4, =", PLUS, MINUS;
Xleft ‘s, /", MUL, DIV, MOD;
Xleft UMINUS;
Xieft EXP;
Xleft ‘s, 0, ¢, {0, *.7, DOT, WHERE;
] Xleft STAR;
h 44)
lattribute declarations
44
| productlons of the grammar
start
: spec
1}
spec
: spec module
()
H
{3}
| A production with nothing after the "{" means the empty string
| Is a legal replacement for the left hand side.
module
: function
)
{ machine
(1
i type
(}
y definition
(1}
i instance | of a generic module
{}
funct ion

: optionally virtual FUNCTION interface wessages concepts END 1

() *

| Virtual modules are for inheritance only, never used directly.

machine

81

. N

bt I

r—

: optionally_virtual MACHINE interface state messages transactions temporals concepts

END
F' {)
' type
: optlionally_virtual TYPE Interface mode! messages transactions temporafs concepts ENO
{1}
definition
: DEFINITION interface concepts END
)
Instance
: optionally virtual INSTANCE parametrized_name ‘=’ parametrized name hide renames END
{1}
| For making instances or partial instantiations of generic modules,
| and for making Interface adjustments to reusable components
| by hiding or changing some names.
interface
: NAME formal_parameters inherits Imports export
{)
! This part describes the static aspects of a module’s interface.
I The dynamic aspects of the Interface are described in the messages.
| A module is generic iff It has parameters.
| The parameters can be constrained by a WHERE clause.
| A module can Inherit the behavior of other modules.
| A module can import concepts from other modules.
| A module can export concepts for use by other modules.
Inherits
: inherits INHERIT parametrized _name hide renames
{1}
:
{1}
| ancestors are generalizations or simplified views of a module
| an actor inherits all of the behavior of its ancestors
hide
: HIDE name_lIst
(1}
i
()

92

| Useful for providing limited views of an actor.
| Different user classes may see different views of a system.
| Messages and concepts can be hidden.

renames
: renames RENAME NAME AS NAME
{}
!

{)

| Renaming Is usefu! for preventing name conflicts when Inheriting
| from multiple sources, and for adapting modules for new uses.

| The parameters, mods| and state components, messages, exceptions,
| and concepts of an actor can be renamed.

imports
: Imports IMPORT name_list FROM parametrized name
(1
|

{1}

export
: EXPORT name_list
()
L]
|

(1}

messages
: messages message
-
]
(1}

mgssage
: MESSAGE message header operator response
(1}

s

response
: response_body

{}
| response_cases

(]

t

83

response_cases
: WHEN expression_iist response_body response_cases
()
{ OTHERWISE response_body
()

response_body
: choose reply sends transition
{)

choose
: CHOOSE "(° fleld_tist restriction °)°
{)

()

reply
: REPLY message_headsr where

()

GENERATE message_header where | used in iterators

(1

()

: sends send
()

)

: SEND message_header TQ parametrized_name where fereach
()

transition
: TRANSITION expression_list | for describing state changes
()

[l
t

()

.
’

message_header
: optional_exception optional name formal_arguments
{)

94

where
: WHERE expression_list
{3}
i %prec SEMI | must have a lower precedence than WHERE

{1

optionally virtual
: YIRTUAL
()

(3

optional exception
: EXCEPTION
{1}
{ Xprec SEM!
]

»

operator
: operator OPERATOR operator_list
(1

(1

.
’

foreach
: FOREACH “(’ fleld_list restriction)’
()
!
{1}

| FOREACH is used to describe a set of messages to be sent.

concepts
: concepts concept
{1}

(]

H

concept
: CONCEPT NAME formal parameters ':‘ type_spec where
| constants
()
i CONCEPT NAME formal _parameters formal_arguments where VALUE formal_arguments where
I functions
(1

85

! mode | | data types have conceptual models for values
i : MODEL formal_arguments Invariant
()
| MODEL formai_arguments invariant initially
I Inltlaily clause specifies automatlic variable initialization

()
h state | machines have conceptua! modeis for states
: STATE formal_arguments invariant initially
()
Invariant I Invariants are true [n aif states
: INVARIANT expression_|ist
{)
Initially ! initlal conditions are true only at ths beginning
: INITIALLY expression_l st

{1}

transactions
: transactions transaction

{1}

{1

>

transaction
: TRANSACTION parametrized name ‘=' action_expression where
{}
| Transactions are atomic.
| The where clause can specify timing constraints.

actlon_expression

: actlon_expression ’;‘ actlon_list Xprec SEMI | sequence
¢}
i action_|ist

(1

action_list

: action_list action_list Xprec STAR ! parallel
(1}
{ IF alternatives F! | cholce
()
! DO alternatives 0D | repetition
96

)

| parametrized_name ! a normal message
{}

i EXCEPTION parametrized_name | an exception message
{1}

»

alternatives
- : alternatives OR guard action_expression
{1
| guard actlon_expression
{1}

r‘ guard
. : WHEN expression ARROW
{}

()

temporals
: temporals temporal
()

(1

temporal
: TEMPORAL NAME where response
]

! Temporal events are trigged at absolute times,
| in terms of the focal clock of the actor.

! The "where" describes the triggering conditions
I in terms of "TIME" and "PERIOD".

formal_parameters ! parameter values are determined at specification time
: "{" fletd_list "}’ where
(1}

(1

formal_arguments | arguments are evaluated at run-time
: (" fleld_list 7))’
(3
]
1

{1}

g7

fleld_list
: fleld_list *,” fleld

' ()
! field
()

fleld
: name_list “:° type_spec
(1
i ‘$" NAME “:’ type_spec
{1}
I
(1}

»

type_spec

: parametrized name ! name of a data type
{}

i TYPE actual_parameters
{1

i FUNCTION actual_parameters
{1}

i MACHINE actual _parameters
()

i ITERATOR actual _parameters
{1}

Y
(1

name_list
© name_|ist NAME
(}
! NAME
(1}

’

optional_name
: NAME formal_parameters
(1

)

parametrized_name
: NAME actuai parameters
()

»

actual_parameters | parameter values are determined at specification time

88

: (0 arg_tist 'Y’
{)

! Xprec SEMI ! must have a lower precedence than '{’
{}

actual_arguments | arguments are evaluated at run-time
: (’ arg_list *)’
{1
t %prec SEM! ! must have a lower precedence than ' (°
()

13

arg_list
: arg_list ',’ arg Xprec COMMA
)
y arg
{)

arg
. expression
{1}
{ palr
{1}

expression_list
: expression_list *,’ expression %prec COMMA
)
i expression
)

I3

expression
: quantifier "(’ fleld_list restriction BIND expression ‘)’
{3

parametrized name actua! arguments

)
| parametrized name ‘@’ parametrized name actual arguments

(3
NOT expression Iprec NOT

{1}
expression AND expression Iprec AND

{)
expression OR expression Xprec OR

{1}
expression IMPLIES expression Yprec IMPLIES

{)
! expression {FF expression Zprec IFF

(1}

89

expression ‘<’ expression
{1}

expression ">’ expression
{)

expression ‘=’ expression
{)

expression LE expression

{)
expression GE expression

:xzresslon NE expression
gxgresslon NLT expresslon
r

;xzresslon NGT expression
gx:resslon NLE expresslion
gxgresslon NGE expression

{1}

expression EQV expression
()

expression NEQV exprassion
{)

‘-’ expression

{)

expression '+’ expression
(1}

expression ‘-’ expression
]

expression ‘*’ expression
{3

expression ‘/‘ expression
{)

expression MOD expression

{)
expression EXP expression

{)
expression U expression

(1

expression APPEND expression

)
expression IN expression

{)
‘®’ expression

iprec
2prec
Xprec
%prec
Iprec
Xprec
Xprec
Xprec
Xprec
Xprec
fprec
Xprec
Xprec
iprec
iprec
Xprec
Xprec
Xprec
Xprec
Xprec
Lprec
Xprec

Xprec

LE

LE

LE

LE

LE

LE

LE

LE

LE

LE

LE

LE

UM

INUS

PLUS

WINUS

WU

L

DIV

MOD

EXp

u

APPEND

ST

AR

| *x Is the value of x before a transition
| x Is the value after the transition

{)
‘$’ expression

Xprec DOT
| $x represents a collection of items rather than just one
| s1 = {x, $s2) means s1 = union({x}, s2)

100

-l J

_1®

I 1 = [x, $52] means s1 = append([x], $2)

{1}

expression RANGE expression ¥prec RANGE

I xinfa..b] Iff xinf{a..b) Iff a <= X<=bh

I [a .. b] is sorted in increasing order

{)

expression ‘.’ NAME Xprec DOT

{)

expression ‘[’ expression ‘]’ Xprec DOT

(1}

‘(’ expression ‘)’

]

‘(" expression units °)’ | timing expression

{1}

TIME | The current local time, used in temporal events
{1}

DELAY | The time between the triggering event and the response
{)

PER1OD | The time between successive svents of this type
{1

literat

()

literat ‘@’ parametrized_name | literal with explicit type
()

'? | An undefined valus to be specified later

{)

e | An undefined and Illegal value

{)

IF expression THEN expression middle_cases ELSE expression Fl
()

mlddle_cases
: middle_cases ELSE_IF expression THEN expression

(]
()

quantifier

ALL
(1
SOME
{1
NUMBER
()
SUM
()
PRODUCT
()
SET

1m

(]
1 MAX IMUM
()
1 MINTMUM
{)
i UNION
()
! INTERSECTION

i‘)

restriction
: SUCH expression
{1}
)
]

()

literal
: INTEGER_L ITERAL

()

REAL_L ITERAL

()

CHAR_L ITERAL

{1}

STRING_L ITERAL

(1}

‘s’ NAME | enumeration type 1lteral

()

{ ‘[’ expressions ‘]’ | sequence |iteral
{1}

\ ('’ expressions '}’ | set literal
(1

! *{’ expression ‘;’ expressions '}’ | map !literal
{)

i ' pair_list)’ | tuplie literal
]

b (0 palr Yy’ | one_of literal
{1}

| relation literals are sets of tuples

expressions
: expression_|ist
{)
!
{)

palr_list

102

: pair_list ’,’ pair
()
NAME pair
{)
\ pair
()

pair
: NAME BIND expression
{)

: NANOSEC
{1}

! MICROSEC
{1}

! MILLISEC
{)

! SECONDS
(1}

i MINUTES
(3

i HOURS
(1}

1 DAYS

{)

NEEKS

{1}

operator_|ist
: operator_Iist operator_symbo|
)
| operator_symbol
{1

operator_symbol|
: NOT
{)
i AND
(1
i OR
{1
i IMPLIES
()
i IFF
(1

H <

103

I\ J

104

[=]
z s
> L <o
~~ -~~~ -~ ~ Ll el el W TV I W TV R B o I = B B e T oo B oo SN o T = B o N« WY ~ O ~ FNE N s -
A " ad (Y] [*9] b (L] -d [< s +] - ~ o >< Q. =z - . [}
et v et v At] el (D) et T et N E S X E Sl At T v s bty s e TE e W) M DD M el el B St b St N Nt

APPENDIX B

| version stamp $Header: spec.k,v 1.5 88/02/28 13:27:58 berzins Exp §

! In the grammar, comments go from a “1" to the end of the line.

| Terminal symbols are entirely upper case or enclosed in single quotes (').

I Nonterminal symbols are entlirely lower case.

| Lexical character classes start with a captial letter and are enclosed in {}.
f In a regular expression, x+ means one Or more Xx's.
!

|

|

|

|

In a regular expression, x* means 2ero or more X's.

In a regular expression, [xyz] means x or y or z.

in a regular expression, [“xyz] means any character except x or y or z.
In a regular expression, [a-z] means any character between a and z.

In a regular expression, . means any character except newiine.

definitions of lexical classes

Xdefine Digit :[0-9]

Xdefine Int :{Digit)+

Xdefine Letter :[a-zA-2]

Xdefine Aipha :({Letter}i(Digit}}”_*)

Xdefine Blank L \t\n]

2def ine Quote :[")

Xdef ine Backs!tash "\

Xdefine Char :([*"\\]}{Backslash}{Quote)}!{Backsiash}{Backslash})

| definitions of white space and comments

:{Blank)}+
COMMENT M- E\n"

| definitions of compound symbols and keywords

AND g
OR "
NOT "
IMPLIES May
|FF :em>”
LE AT
GE :">u"
NE -
NLT e
NGT "
NLE " Tes”
NGE PRt

105

EQv
NEQV

RANGE
APPEND
MOD
EXP

BIND
ARRON

IF
THEN
ELSE
IN

v

ALL
SOME
NUNBER
SUM
PRODUCT
SET
MAX | MUM
MININUM
UNION
INTERSECT | ON
SUCH
ELSE_IF

AS
CHOOSE
CONCEPT
DEFINITION
DELAY

0o

END
EXCEPTION
EXPORT

Fl
FOREACH
FROM
FUNCTION
GENERATE
HIDE
IMPORT
INHERIT
INITIALLY
INSTANCE
INVAR | ANT
ITERATOR

P A=

:{Backslash}|MOD

:IF
:THEN
:ELSE
<IN
U

:ALL

:SOME

:NUMBER

:SUM

:PRODUCT

:SET

:MAX | MUM
:MINIMUM

:UNION

: INTERSECT{ON
:SUCH{B lank }*THAT
:ELSE{Blank}*IF

:AS
:CHOOSE
:CONCEPT
:DEFINITION
:DELAY

:00

:END
:EXCEPTION
:EXPORT
:F)
:FOREACH
:FROM
:FUNCTION
:GENERATE
:HIDE

: IMPORT

« INRERIT

< INITIALLY
+ INSTANCE
: INVAR|ANT
: ITERATOR

106

Nadeid

MACHINE :MACHINE
MESSAGE :MESSAGE

: MODEL :MODEL
0D :00

; oF :OF

; OPERATOR :0PERATOR

! OTHERWISE :OTHERW I SE
PERIOD :PER10D
RENAME :RENAME
REPLY :REPLY
SEND :SEND
STATE :STATE
TEMPORAL : TEMPORAL
TIME :TIME
T0 :T0
TRANSACT [ON :TRANSACT ION
TRANSITION :TRANS I TON
TYPE :TYPE
VALUE :VALUE
VIRTUAL :VIRTUAL
WHEN :WHEN
WHERE :WHERE
SECONDS :SECONDS
MINUTFS MINUTES
HOURS :HOURS
DAYS :DAYS
WEEKS :WEEKS
NANOSEC :NANOSEC
MICROSEC :MICROSEC
MILLISEC :MILLISEC
INTEGER_LITERAL :{Int}
REAL_L ITERAL ({Int}"."{Int)
CHAR_L ITERAL guem e

STRING_LITERAL :{Quote}{Char}*{Quote)
NAME :{Letter)}{Alpha)*

| operator precedences
{ Xleft means 2+3+4 Is (2+3)+4.

Yleft “s*, IF, DO, EXCEPTION, NAME, SEMI;
Yleft *,", COMMA;
Lleft SUCH;
Xleft IFF;
Yleft IMPLIES;
Yieft OR;
Lleft AND;; 1
Xieft NOT;
Yleft "<’, *»>*, "=", LE, GE, NE, NLT, NGT, NLE, NGE, EQV, NEQV;
.
107

nonassoc IN, RANGE;

' Xleft U, APPEND;

o Xleft “+°, '=7, PLUS, MINUS;

h Xleft ‘e, /7, MUL, DIV, MOD;
Xleft UMINUS;
Xleft EXP;
Lleft $, 0, (¢, (0, 7.7, DOT, WHERE;
Xleft STAR;
Xleft COMMENT;

!II X
lattrubute declatations for nonterminal symbols

start {
str_value: string;

};

spec (
indent: string;
str_value: string;
Y

modulie (
indent: string;
str_value: string;
Y

function (
Indent: string;
str_value: string;
};

machine {
indent: string;
str_value: string;
N

type {
indent: string;
str_value: string;

};

definition {
Indent: string;
str_valus: string;
JH

Instance {
indent: string;
str_value: string;
};

108

V-.'!m".-m Py

Interface {
indent: string;
str_value: string;
beursor: int;
padding: string;
};

Inherits (
indent: string;
str_value: string;
beursor: Int;
padding: string;
};

hide {
Indent: string;
str_value: string;
bcursor: int;
padding: string;
3

renames (
indent: string;
str_value: string;
beursor: int;
padding: string;
};

imports (
indent: string;
str_value: string;
bcursor: int;
padding: string;
3

export {
indent: string;
str_value: string;
beursor: Int;
padding: string;
IH

messages (
Indent: string;
str_value: string;
beursor: Int;
padding: string;
b

message {

109

14l

indent: string;
str_value: string;
beursor: int;
padding: string;

};

response {
indent: string;

str_value: string;

beursor: int;

padding: string;
}s

response_cases {
Indent: string;

str_value: string;

beursor: int;

padding: string;
};

response_body
indent: string;
str_value: string;
beursor: int;
padding: string;
5

choose {
indent: string;
str_value: s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>